
NASA-CR-195757

Febuary 1994 UILU-ENG-94-2204

CRHC-94-03

Center for Reliable and High-Performance Computing /L/ _ l-c _....

f

I_?f
C

DESIGN FOR DEPENDABILITY: A
SIMULATION-BASED APPROACH

Kumar K. Goswami

(NASA-CR-195757) DESIGN FOR

DEPENDABILITY: A SIMULATION-BASED

APPROACH Ph.D. Thesis, 1993

(Illinois Univ.) 149 p

N94-29890

Uncles

63/61 0003762

Coordinated Science Laboratory

College of Engineering

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved lor Public Release. Distribution Unlimited.

i

UNL;L.'\H b .LJ:J.r.,U
SECURIrY CLASSIFICATIONOF THIS PAGE

la. REPORTSECURITYCLASSIFICATION

Unclassified

2a. SECURITYCLASSIFICATIONAUTHORITY

OECLASSIFICATIONI DOWNGRADING SCHEDULE

4. PERFORMINGORGANIZATION REPORTNUMBER(S)

UILU-ENG-94-2204
-- CRHC-94-03

6,1. NAME OF PERFORMINGORGANIZATION
Coordinated Science Lab

University of Illinois

6c. ADDRESS(Oty, State, and ZIP Code)

1308 W. Main St.

Urbana, IL 61801

8a. NAME OF FUNDING/SPONSORING

,_ORGANIZATION
7a

ADDRESS(City, State, and ZIP Code)

7b

11. TITLE (Include Security Classification)

Design for Dependability:

12. PERSONALAUTHOR(S)

13a. TYPE OF REPORT
Technical

16. SUPPLEMENTARYNOTATION

REPORT DOCUMENTATION PAGE

lb. RESTRICTIVEMARKINGS

None
3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;

distribution unlimited

S. MONITORING ORGANIZATION REPORTNUMBER(S)

OFFICESYMBOL
(If applicable)

N/A

OFFICESYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION _.
Office of Naval Research, _T&tional Aeronaut_Lcs

Spa_e_dm'ih-i-stra-t_-: 'rWn,'t,=m. _,-,a
CSC

i

...; 22217 ,- -

Moffet Field, CA 95043

Cupertino, CA 95014 and Falls Church VA 222

9. PROCUREMENTINSTRUMENT IDENTIFICATION NUMBER

N00014-91-J-III6, NASA NAG 1-613 , Tandem,

GSA CSC 468969

10. SOURCEOF FUNDING NUMBERS

ELEMENT NO. . ACCESSIONNO.

A Simulation-Based Approach

GOSWAMI, Kumar K.

13b. TIME COVERED
FROM TO

14. DATEOFREPORT _ea_Mon_,Da_ IS. PAGE COUNT94-02-02 148

COSATI CODES I 18. SUBJECTTERMS(Cominue on reverse if ,ecessary and identify by bl_:k numbed

FIELD J GROUP SUB-GROUP I dependability, simulation, acceleration, algorithms,L hybrid

Thi- research_ddresaes meues in _mul_tion-based system leveldependability analysisof fault-toler&nt

computer systems. The issues and difficulties of providing a general simulation-based approach for system

level analysis are discussed and a methodology that address and tackle these issues is presented. The

proposed methodology is designed to permit the study of a wide variety of architectures under various fault
conditions. It permits detailed functional modeling of architectural features such as sparing policies, repair

schemes, routing algorithms as well as other fault-tolerant mechanisms, and it allows the execution of actual

application software. One key benefit of this approach is that the behavior of a system under faults does
not have to be pre-defined as it is normally done. Instead, a system can be simulated in detail and injected

with faults to determine its failure modes.

The thesis describes how object-oriented design is used to incorporate this methodology into a general

purpose design and fault injection package called DEPEND. A software model is presented that uses abstrac-

tions of application programs to study the behavior and effect of software on hardware faults in the early

design stage when actual code is not available. Finally, an acceleration technique that combines hierarchical
simulation, time acceleration algorithms and hybrid simulation to reduce simulation time is introduced.

20. DISTRIBUTIONI AVAILABILITYOF ABSTRACT J21. ABSTRACTSECURITYCLASSIFICATION

[] UNCLASSIFIED/UNLIMITED I--I SAME AS RPT. [] one USERSJ Unclassified

22a. NAME OF RESPONSIBLEINDIVIDUAL 122b-TELEPHONE(/nclude Area Cc"_e)122c" OFFICESYMBOL

DD FORM 1473, 84 MAR 83APRedition may beuseduntil exhausted. SECURITYCLASSIFICATIONOF THIS PAGE
All other editions are obsolete.

UI;CLASS IFIED

!9. ABSTRACT

UN CLAS SIFI ED

S"£CURITY CLASSIFICATION OF THIS PAGE
i

An extensive simulation based study of the Tandem Integrity $2 is conducted with DEPEND to illustrate

its capabilities. The system is evaluated to determine how it handles near-coincident errors caused by

correlated and latent faults. Issues such as memory scrubbing, re-integration policies and workload dependent
repair times which affect how the system handles near-coincident errors are also evaluated. Application
specific analysis of the existing and a newly proposed scrubbing scheme is performed. Unlike other simulation-

based dependability studies, measurements from injection experiments conducted on an actual Tandem

Integrity $2 computer are used to validate the software model and the simulation model of the Integrity $2.
Results from a detailed simulation model that does not use acceleration are used to validate the acceleration
technique.

DESIGN FOR DEPENDABILITY: A SIMULATION-BASED APPROACH

BY

KUMAR K. GOSWAMI

B.S.C.S.,Embry-Riddle AeronauticalUniversity,1982

M.S., Universityof minois at Urbana-Champaign, 1988

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the

University of l]linois at Urbana-Champaign, 1993

Urbana, Illinois

@Copyright by

Kumar K. Goswami

1993

Abstract

This research addresses issues in simulation-based system level dependability analysis of

fault-tolerant computer systems. The issues and difficulties of providing a general simulation-

based approach for system level analysis are discussed and a methodology that address and

tackle these issues is presented. The proposed methodology is designed to permit the study of

a wide variety of architectures under various fault conditions. It permits detailed functional

modeling of architectural features such as sparing policies, repair schemes, routing algorithms

as well as other fault-tolerant mechanisms, and it allows the execution of actual application

software. One key benefit of this approach is that the behavior of a system under faults does

not have to be pre-defined as it is normally done. Instead, a system can be simulated in detail

and injected with faults to determine its failure modes.

The thesis describes how object-oriented design is used to incorporate this methodology

into a general purpose design and fault injection package called DEPEND. A software model

is presented that uses abstractions of application programs to study the behavior and effect of

software on hardware faults in the early design stage when actual code is not available. Final]y,

an acceleration technique that combines hierarchical simulation, time acceleration algorithms

and hybrid simulation to reduce simulation time is introduced.

An extensive simulation based study of the Tandem Integrity $2 is conducted with DE-

PEND to illustrate its capabilities. The system is evaluated to determine how it handles

near-coincident errors caused by correlated and latent faults. Issues such as memory scrubbing,

re-integration policies and workload dependent repair times which affect how the system han-

dles near-coincident errors are also evaluated. Application specific analysis of the existing and

a newly proposed scrubbing scheme is performed. Unlike other simulation-based dependability

studies, measurements from injection experiments conducted on an actual Tandem Integrity S2

computer are used to validate the software model and the simulation model of the Integrity 52.

Results from a detailed simulation model that does not use acceleration are used to validate

the acceleration technique.

Results from the study show that accurate application specific analysis using the software

model can produce coverage values that are over 100% different from those obtained with simple

iii

estimations of program behavior. A simulation model using the acceleration technique is shown

to produce results that are within the 99% confidence interval of a simulation model that does

not use acceleration, but it does so in 7 minutes as opposed to 36 hours. Accurate modeling

of the "staggered failure" effect caused by near-coincident errors observed on actual systems

show that the impact of correlation (for the Integrity $2) is dependent on the error latency

distribution. Simple analytical models that fail to represent this relationship produce mean time

between failures (MTBF) that are orders of magnitude lower. Different latency distributions

with the same mean are shown to produce statistically significant changes in system MTBF

when correlation is considered. Inter-component dependencies, which are a function of the

architecture and error latency, are shown to substantially reduce system MTBF. Scrubbing is

shown to be ineffective unless the latency times exceed half the cycle time of the scrubber.

iv

Acknowledgements

I am very grateful to my advisor, Professor P,.avi Iyer for his continual support and encour-

agement. His patience, insight and assistance made this thesis possible. I would also like to

thank Professors W. Kent Fuchs, Laxmikant Kale, Jane Liu, David Padua and Janak Patel for

serving on my dissertation committee.

I would like to thank Luke Young for allowing me to freely use his hybrid injection facility

and answer my million and one questions. Special thanks go to Tim Tsai for valuable discussions

and for the time he took to run many fault injection experiments for me. His effort made it

possible for me to complete the thesis on time. Discussions, debates and collaboration with Jim

Barnette, Axel Hein, Dan Olson and Darren Sawyer gave me the second wind that I needed to

complete this work. I truly appreciate all their effort and encouragement. Thanks are due to

In Hwan Lee, Dong Tang and Gwan Choi, who were always there to answer questions, review

my papers and offer suggestions.

I was fortunate to have a very supportive and special bunch of friends at CR.HC who made

my stay in Urbana fun and enjoyable: Jeff Baxter, Paul Chen, Bob Dimpsey, John Fu, John

Holm, Bob Janssens, Antoine Mourad, Mike Peercy, Paul Ryan, Jonathan Simonson, and Nancy

Warter. I will miss their company. I would like to thank Krishna Subramanian for being a dear

friend during the final stretch. I am very grateful to a very special friend, Rahul, for his loving

warmth and affection (and for those lovely B.D. Baggies). Finally, I am especiaLly indebted

to my parents, my two sisters and Karyn whose unwavering support has been my source of

strength and inspiration over these past years.

v

Table of Contents

Chapter

1 Introduction .. 1

1.1 Related Work 2

1.2 Contributions 3

1.3 Overview .. 4

2 Development Issues 6

3 Simulation Environment 9

3.1 Approach .. 9

3.2 Architecture 11

3.2.1 User Environment 13

3.2.2 The Object Library 13

3.2.3 Fault Models 15

3.2.4 Fault injector 17

3.2.5 Fault-tolerant server 19

3.2.6 Fault-tolerant communication link 21

3.2.7 Programming environment 22

3.3 Comparison 25

4 Tool Capabilities 27

4.1 Behavioral Modeling 27

4.2 Modeling Real Fault Scenarios 31

4.3 Discussion .. 35

vi

5 A CaseStudy .. 37

5.1 The TandemIntegrity $2Architecture 37

5.2 SimulationModel 39

6 SoftwareBehaviorUnderHardware Faults 42

6.1 Model Overview 44

6.2 Model Description 45

6.2.1 The Memory System 46

6.2.2 The Probabilistic Control-Flow Graph 47

6.2.3 The Memory Subspace 48

6.2.4 The Execution Environment 48

6.2.5 The Injector 52

6.2.6 Specification Language 53

6.3 Model Application 54

6.3.1 Application Programs 54

6.3.2 Experiment Setup 55

6.3.3 Validation Environment 55

6.3.4 Program Detection Latency 57

6.3.5 Coverage of the Memory Scrubber 66

6.4 Summary .. 69

7 Simulation Acceleration 71

7.1 Acceleration Approach 71

7.2 Stage 1: Hierarchical Simulation and Time Acceleration 76

7.2.1 Validation of the First Stage 78

7.3 Stage 2: Hybrid Simulation 79

7.3.1 Markov modeling 81

7.3.2 Monte Carlo simulation 81

7.3.3 Validation of the Hybrid Approach 83

7.4 Discussion .. 92

vii

8 Analysis of the TMR-based System 94

8.1 Assumptions and Parameters Used in the Simulations 94

8.2 Impact of Latent Errors 96

8.3 Impact of Correlated Errors 99

8.4 Evaluation of Memory Scrubbing 102

8.5 Impact of P_epair Times 111

Conclusion .. 115

9.1 Summary .. 116

9.1.1

9.1.2

9.1.3

9.1.4

9.2

The Approach 116

Software Modeling 117

Acceleration Technique 118

Analysis of the TMR-based System 120

Future Extensions 122

Appendix A Automation of the Acceleration Technique 125

Bibliography ... 129

Vita .. 134

viii

List of Tables

3.1 A few fundamental classes 14

3.2 Some key classes that model the architectural components of a fault-tolerant

system .. 15

3.3 Comparison of the features of several simulation tools 26

4.1 The parameters used. All times are in hours 34

5.1 Measured globalmemory re-integrationtimeswith varyingmachine idlepercent-

ages ...
38

6.1 Parameters forthe threelow levelerrordetectionmodels.............. 58

6.2 Statisticsofthe measured and simulatedprogram detectionlatencyforthe Gaus-

sianeliminationprogram 62

6.3 Sensitivityof the mean detectionlatencytime to varyingvaluesof p_ (LIMIT =

5) ... 64

6.4 Parameters for the low level error detection models 64

6.5 Statistics of the measured and simulated program detection latency for Sort... 65

6.6 The active coverage of the scrubber 67

6.7 Active coverage of the new scrubber 68

6.8 The estimated active coverage of the new scrubber for one program using a fitted

/PL(P) ... 69

6.9 Active coverage of the new scrubber using ramp and an exponential detection

latency distribution 69

7.1 Empirical pdfs fitted with hypoexponential pdfs 87

ix

7.2

7.3

7.4

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

System

System

System

MTBF obtained with the pure simulation and hybrid approaches 90

MTBF for the two error latencies (Experiment 3) 90

MTBF for various memory re-integration times 92

System

System

System

System

System

MTBF for two latency distributions with various means 97

MTBF for two fast error arrival rates 98

MTBF with inter-component dependence 99

MTBF for two latency distributions with various means 100

MTBF for the normal latency distributions with varying C_ values 101

System MTBF for the exponential and normal latency distributions with inter-

component dependence 101

Comparison of MTBF obtained with DEPEND and the Petri-net model 104

Scrubber coverage for various exponential error latency distributions 105

Parameters of the experiment 108

Coverage of the two scrubbing schemes 109

System MTBF obtained for various application memory space sizes 109

System MTBF obtained for various application memory space sizes with the new

memory configuration 110

System MTBF with modeling of near-coincident errors 113

X

List of Figures

3.1 The DEPEND architecture 12

3.2 Steps in developing and simulating a model with DEPEND 14

3.3 The Fault-Tolerant Server Object 20

3.4 The Fault-Tolerant Communication Link 21

3.5 A simple example program using DEPEND - the main co-routine 23

3.6 A simple example program using DEPEND - the co-routine 24

4.1 Distributed system executing the load balancing heuristic 28

4.2 Database maintained by Node 0 and the status messages it receives 29

4.3 Impact of corrupted status update messages 31

4.4 Impact of destroyed status update messages - before and after design change... 32

4.5 The error injection process that models error latency 33

4.6 The repair process that considers the state of the other CPUs in the system. . . 33

4.7 Comparison of system MTTF for the three models 35

5.1 The Tandem Integrity $2 processing subsystem 38

.5.2 Simulation model of the Integrity $2 system developed with DEPEND 40

6.1 The complete software model execution environment 44

6.2 Example program and corresponding PCFG 53

6.3 An injection environment using hybrid monitoring 56

6.4 Program used to inject errors and obtain measurements 57

6.5 Cumulative detection latency distribution functions 59

6.6 Histogram of the program detection latency in seconds, for 1 program 60

6.7 Access time depends on location of the PC and the error 60

xi

6.8

6.9

6.10

6.11

6.12

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

Histogram ofthe measured detectiontimes for Gauss 61

Histogram ofmultiplereads ofcorruptedlocations.................. 62

Histogram ofthe program detectionlatencyof two programs (sec.)......... 63

Measured and simulated cumulative detection latency distribution functions. 6.5

Frequency of multiple accesses of corrupted location (Measured) 66

The framework of the acceleration technique 73

Time acceleration: "Error" driven simulation 74

Hybrid simulation for dependability evaluation 75

The error occurrence process for 2 CPUs 77

Injection program used to measure the MTBF 79

The Time to CPU shutdown distribution (in seconds) 80

Distribution of the number of latent errors prior to a C PU shutdown S1

The hybrid approach 82

Markov model of system with exponential failure _ repair distributions 83

Inter-failure times extracted from an execution of the functional simulation 84

Failure density functions for experiment 1 S5

Failure density functions for the two error latencies (Experiment 3) 86

Empirical and fitted failure pdfs for a single processor & memory 88

CTMC that models the system with hyperexponential failure distributions. . . $9

GSPN description with 2-phase FIYPO failure distribution 91

8.1 Petri-net model of the three CPUS with memory scrubbing 103

8.2 System MTBF for various latency distributions (Hourly Scrubbing) 104

8.3 System MTBF when inter-component dependence is modeled with hourly scrub-

bing .. 106

8.4 System MTBF obtained with the single and dual scrubbing schemes 108

8.5 System MTBF for various subsystem re-integration times 112

8.6 System MTBF for various subsystem re-integration times - New Memory Con-

figuration ... 114

A.1 Definition of class used to collect distributions 126

xii

A.2 Definitionof statisticalmodelconsistingof two distributions............ 126

A.3 Definitionof statisticalmodelconsistingof two distributions............ 127

A.4 The Monte Carlo program that uses the failure and repair submodel 128

°°°

Xlll

Chapter 1

Introduction

The increasing demand and growing complexity of dependable systems has spurned the need

for automated design tools that can reduce design time while ensuring that dependability (e.g.

availability, reliability) specifications are met. The focus has been on developing electrical

and gate level fault analysis tools. Though these tools are ideal for analyzing LSI and VLSI

components they are not suited to analyze a complete system. Dependability is a system

issue and as such isolated analysis of the individual components is insufficient. Ideally. system

level dependability analysis should consider the hardware, the system software, the application

and the interaction and inter-dependencies of all of these components under realistic fault

scenarios. This is an extremely complex task and the difficulties that arise depend on the

approach taken. Currently, two approaches are primarily used for system level dependability

analysis. Analytical tools, and in particular tools that represent systems with continuous time

Markov chains (CTMC), are used for very high-level trade-off analysis. These tools are best

suited for the early design stages when little information is known about the target machine.

However, the accuracy of their results is limited by the level of detail to which they can represent

a system. The second approach is fault injection of proto-type systems. Though this approach

provides the most believable results, it has three major drawbacks. First, it does not provide

feedback during the design stages. Second, because the system is fixed, it cannot be used to

study alternate configurations. Third, it cannot provide many dependability measures such as

availability and mean time between failure (MTBF) because it would require measuring the

system for years.

This thesisexploresa third approach:functionalsimulation-basedsystemleveldependabil-

ity analysis.Unlikeanalyticalmodels,functionalsimulationcanaccuratelymodelthefunctional

behaviorof the systemcomponents,the inter-componentdependencies,workloadpatternsand

reconfigurationschemes.This makesthe approachmoreusefulduring the intermediatestages

of systemdevelopmentwhenmoreinformationis availableaboutthesesystemcharacteristics.

Furthermore,if the functionalsimulationtool canalsoinject faults,it canbeusedto perform

injectionexperimentsandprovideearlydesignfeedback.Thereareafewsimulation-basedtools

that arespecificallygearedfor systemleveldependabilityanalysis.However,they either han-

dle very specificarchitecturesand fault modelsor only useprobabilisticmodelingand hence

are essentiallyextensionsof analytical tools. This thesisfocusseson the developmentof an

integratedfault injectionandfunctionalsimulationenvironmentfor systemleveldependability

analysisthat canbeusedto evaluatea widevarietyof systems.Thethesisidentifiesthe major

issuesthat impedethe developmentof sucha tool, presentssolutionsto tackletheseissuesand

usesthemto performa comprehensivestudyof anactualfault-tolerantmachine.

1.1 Related Work

In [19], the authors describe and compare several tools that solve CTMC models. There is

increasing work in software and hardware fault injection of proto-type systems [38, 64, 75, 18,

36]. However, there is a lack of simulation tools for system level dependability analysis. Most

simulation tools are designed to facilitate performance analysis (CSIM [60], ASPOL [43], SES

Workbench [61], RESQ [58]). These tools do not provide the mechanisms needed to interrupt

the system and inject faults. VHDL [30] is a powerful hardware specification language but it

does not contain built-in facilities to support dependability analysis. NEST [17] is a functional

simulation and proto-typing tool used explicitly to analyze distributed networks and system

protocols. It is very specialized and has a limited set of facilities to fail links and nodes.

Another functional simulation tool called REACT [12] is specifically designed for analyzing

alternative TMR architectures. Metasan [56] and the Rainbow Net [35] are Petri-net tools. An

extended Petri-net structure is used to input a model and solve it via simulation. Thollgh the

Petri-net tools have greater applicability than analytical tools, they rely solely on probabilistic

modeling to describe a system. This is a major limitation because, as we show in detail in

Chapter3, it requiresthat the userpre-definethe fault behaviorof a system. Furthermore,

thesetools provideonly a limited set of fault modelsand provideno mechanismto reduce

simulationtimeexplosion.

1.2 Contributions

The focus of this research is the development and use of simulation techniques for system level

dependability analysis. Ad-hoc techniques are commonly used to conduct detailed system level

dependability analysis using functional simulation. Each system design effort is accompanied by

the fresh development of simulation models specific to the architecture being built and the fault

models being considered. There has been no prior attempt to characterize and provide a more

structured approach to functional simulation-based dependability analysis at the system level.

The goals of this thesis are to provide a structured approach and to develop methods that allow

a comprehensive study of a system including the hardware and software components. Towards

these goals, several issues that impede the development of a general-purpose, integrated fault

injection and simulation environment for system level dependability analysis are identified.

Broadly, they are:

• Modeling a large variety of components.

• Coping with the large fault model domain.

• Reducing model development time and model complexity.

• Incorporating software behavior under faults in a simulation-based study.

• Reducing simulation time explosion.

Methods to tackle these issues are discussed and presented. A synergy of these methods is

used to analyze an actual system under realistic fault conditions for specific applications. The

methods are validated by comparing the simulation results with those obtained from fault

injection experiments on an actual machine. Finally, the methods are incorporated into a

simulation tool called DEPEND.

3

1.3 Overview

Chapter 2 discusses the major issues in developing a general-purpose system level filnctional

simulation tool. Chapter 3 presents the approach used to tackle the first three issues mentioned

earlier. It also presents the DEPEND integrated simulation and fault injection environment

that incorporates these approaches. The chapter presents the key features of the tool and the

fault models it provides. A table comparing DEPEND's features with existing simulation-based

system level dependability analysis tools is also included.

Having described the essential features, Chapter 4 illustrates the uses and benefits of the

tool. One can ask, given the large number of analytical and Petri-net based simulation tools,

what is the need for functional simulation tools for system level dependability analysis? What

additional information and capabilities can they provide over analytical tools and fault-injection

environments? The goal of Chapter 4 is to answer these questions with a few examples.

DEPEND is used to analyze a triple-modular redundant (TMR) system and in particular the

Tandem Integrity $2 fault-tolerant system under realistic fault scenarios. It is well established

that this system is very effective against single faults [34, 75]. An important question is how such

systems cope with near-coincident errors caused by correlated and latent faults. Architectural

issues that have a bearing on how the system handles near-coincident faults include memory

scrubbing, re-integration policies and workload dependent repair times. Since the reliability of

a system is also affected by the application and because most fault-tolerant systems are geared

to perform specific functions, it is also imperative to study such systems within the context of

an application. To study these issues, DEPEND is used to simulate the Integrity $2 system and

evaluate the combined effect of all these factors. Furthermore, the simulation of the Integrity

$2 system is validated by comparing the results of the simulations with measurements obtained

from fault injection experiments conducted on a production Integrity S2 machine. Chapter 5

describes the salient features of the Tandem Integrity $2 system. It also presents the basic

simulation model developed with DEPEND.

The focus of Chapter 6 is on application specific dependability analysis. It presents the

simulation-based model developed to analyze software behavior under hardware faults and to

study the impact of latent errors on system dependability. A probabilistic graph model is

proposed that represents program behavior at an abstract level and can obtain key application

4

specificparametersthat affect system dependability. These parameters are used to perform

application specific analysis of functional detection schemes. It is shown that if alternate,

simple techniques are used to model application program behavior the system dependability

measures obtained can be grossly inaccurate.

Chapter 7 presents the acceleration technique that reduces simulation time explosion. The

technique uses a combination of hierarchical simulation, time acceleration, and hybrid simu-

lation. This technique makes it possible to conduct a detailed simulation study of the TMR

system. Unlike other simulation acceleration techniques, this technique is general and not

limited to any particular type of simulation model.

Chapter 8 describes the simulation experiments in detail and presents results of the study.

The impact of correlated errors, latent errors and various repair and memory scrubbing schemes

are quantized and dependability bottlenecks are identified. Results obtained with simplistic

fault models are compared with those obtained with DEPEND's fault models to illustrate the

need for accurate modeling of the fault occurrence process. Finally, Chapter 9 summarizes the

main points of the thesis and the findings of the TMR study. It also contains an assessment

of functional simulation-based dependability analysis and suggests future extensions of this

research.

5

Chapter 2

Development Issues

Functional simulation (also referred to as behavioral simulation) allows more detailed and ac-

curate modeling of computer systems. But this accuracy comes at a cost. Accurate modeling

requires greater information about the system components, more knowledge about their spe-

cific fault models, and more time in developing a simulation. There are at least five issues

that impede the development of general-purpose, functional simulation tools for system level

dependability analysis. The first is a lack of well established system level fault models. This is

partly due to the second issue which is a large and varied component domain. At the gate level

the basic components are gates with single functions and weLl defined interconnections. At this

level, it is possible to establish a fault model such as the single stuck-at fault model that can

consistently be applied to all gates to model their fault behavior. At the system level, the basic

components include CPUs, communication channels, disks, software systems and memory. The

components have complex inputs, perform multiple functions, have v_r[ed physical attributes

(e.g. hardware and software) and complex interconnections. In addition to the diversity of the

components that comprise a system, two similar components (such as two CPUs) can have dif-

ferent functions and behavior. This makes it difficult to establish a single fault model that can

be consistently applied to all components. Limiting the types of components or fault models

represented is one solution but it restricts the tool's applicability (e.g. NEST).

The third issue, which is especially significant when simulating large complex systems, is the

effort and time required to develop a functional simulation model. For fault injection studies

and dependability analysis, there are two factors that contribute to this. One is the time and

effort neededto describethe detailedfunctionality of the systemcomponents.The other is

the time andeffort requiredto inject faults,initiate repairs,abort, rescheduleandsynchronize

eventsandmaintainawholehostof fault statistics.Asthenumberof componentsin the system

becomeslarge,awellformulated,structuredandautomatedapproachis neededto contendwith

the complexity.

The fourth issueis the impact of the softwareon systemdependability. Dependability

studieshavetendedto focusonasystem'shardwarecomponents.But asthe hardwarebecomes

morereliable,the softwarecomponentis becominga moredominantfactor [27].The behavior

and effectof the softwareon hardwarefaults is a major concern. The processof software

executiondeterminesparameterssuchasdetectionlatencytimes, probability of propagation

and propagationtimes. Theseparametershavea bearingon the effectivenessof functional

detectionand repair schemes,which in turn havea hugeimpact on the dependabilityof a

system.Sincethe processof softwareexecutionis determinedby an applicationprogram,it is

imperativeto performapplicationspecificanalysisof functionaldetectionschemesand fault-

tolerant mechanismsin the early designstages. Hence,methodsare neededthat allow the

designerto incorporatetheapplicationinto the overalldependabilitystudy.

Thefifth issue,anextremelyimportantissueandonethat iscommonto both functionaland

probabilisticsimulation,is simulationtime explosion.This occurswhenthe systemmodeled

hasextremelysmallfailureprobabilitiesrequiringlargesimulationruns to obtain statistically

significantresults.This is especiallya problemwith functionalsimulationbecauseits primary

benefit is detailedmodelingwhichfurther contributesto simulationtime explosion. Unless

effectivetechniquesarefoundto reducesimulationexecutiontime, functionalsimulation-based

dependabilityanalysiswill not begenerallyapplicable.Two approachesto reducesimulation

time that havebeenextensivelystudiedin the literature areimportancesamplingand parallel

simulation. Importancesampling[50,41, 72] is a statistical techniquethat skewsthe proba-

bility of failure, therebyreducingthe numberof trims neededto collectfailuredata, and then

"unskews"the resultsobtained. Thoughthis heuristichasbeenshownto be very effective

in selectedcases,it hasseveraldrawbacks.It is not generallyapplicable,it is meant for use

with probabilisticsimulation,and it cannotbeusedto obtainmanysteady-statedependability

measures(e.g.meantime betweenfailure)for generalfailuredistributions.Hence,if this is the

soleaccelerationtechniqueused,it will preclude the use of behavioral models and the generality

of the tool.

Parallel simulation breaks up the simulation model into several processes and executes them

on different machines. Many heuristics [2, 33, 32, 49, 23] have been developed to synchronize

the simulation so that events generated on the separate processors are executed in chronological

order. Unfortunately, the effectiveness of these schemes are application dependent and work well

only with applications that require little synchronization. The focus of past research has been

on synchronization heuristics, even though dividing a simulation into separate logical processes

and assigning them to processors is not a trivial problem and has a significant bearing on the

speed-up achieved. Even when this approach is successful for certain applications, the speed-up

achieved is not linear and is limited to the number of processors available to the user.

To summarize, a generai-purpose simulation-based system level dependability analysis tool

must effectively handle the large component and fault model domain, provide an environment

that facilitates the development of functional simulation models, incorporate the impact of soft-

ware to allow application specific analysis and furnish generally applicable methods to accelerate

the simulation.

Chapter 3

Simulation Environment

This chapter presents the approach used to solve the first three issues mentioned in the previous

chapter and it describes the key features of the integrated fault injection and simulation tool,

DEPEND, that has been developed.

3.1 Approach

The object-oriented design paradigm is used to tackle the first three issues discussed earlier.

Object-oriented design is the construction of a software system as a structured collection of

abstract data type implementations [47]. A class is an implementation of an abstract data type

and an object is a instantiation of a class. A class contains private internal data structures and

methods, which are analogous to functions and procedures, that manipulate its internal data.

The word collection reflects that each class is an independent, useful component of the system.

The key, however, is the word structured which reflects an intelligent division of the system into

classes and the existence of important relationships among them.

Through an intelligent, structured, development of classes, the problems of large compo-

nent and fault domain are tackled. A combination of two criteria: modular decomposition and

modular composability [46], is used to break up the simulation process into individual classes.

Modular decomposition consists of breaking down a problem into small elements whereas mod-

ular composition favors production of elements that can be freely combined with each other to

provide new fimctionality. Two relations, clientship and inheritance [6] are used to combine the

elements (or classes). In a clientship, one class is a client of another that provides the service.

For example, a class that implements a stack could rely on a singly linked list for its implemen-

tation and thus be a client of the class that implements the linked fist. Inheritance, a central

mechanism of object oriented programming, allows a new class to be derived from an existing

class. The new (or derived) class inherits the features of and is an extension or a specialization

of the existing class, the ancestor. An example will help to clarify how modular decomposition

and composition are used to tackle the large fault model domain. The fault injection process

can be broken down into two processes. One process determines when to inject a fault and

interrupt the system and another process responds to the fault injected. The first process is

common to all fault injection methods. It encapsulates the various mechanisms used to deter-

mine the arrival time of a fault and interrupt the system. The second process is the fault model

and is specific to the component and the type of fault being injected. If we encapsulate the first

process into a class called the fault injector class and combine it with one of a multiple fault

model classes, it is possible to create an environment that can inject many types of faults. The

fault injector class is ignorant of the types of faults injected and the components injected. The

fault model class encapsulates this component and fault specific information. As a result, this

approach can be used to inject not only electronic components but mechanical components.

This same structured, modular approach is used to cope with the large component domain;

common aspects of similar components are encapsulated in a class which then combines with

other classes to provide more specific functionality. Furthermore, because users can specify the

classes that model component specific behaviors, the tool is not limited to any pre-defined set

of fault models or component types.

A library of pre-developed classes is used to reduce the time and effort needed to develop

simulation models. The classes in the library provide the skeletal foundation necessary to

rapidly model an architecture and conduct simulated fault injection experiments. The classes

form a hierarchy with fundamental classes at the top and derived classes, which inherit these

fundamental classes, at the bottom. The complexity and specificity of the classes increase as

the bottom of the hierarchy is reached. The fundamental classes provide functionality that is

general and widely used. Such functions include the fault injection mechanism, fault tracing

where a list of all faults injected is recorded and reported, and maintaining fault statistics (e.g.

MTBF, MTBIt, Availability, Coverage). Other fundamental classes include events, mailboxes,

queues, stacks and servers. These are basic constructs needed for functional simulation. At the

10

bottom of the hierarchyareclassesthat modelcomponentsfound in fault-tolerant computer

systems:voters, self-checkingcomponents,fault tolerant servers,communicationlinks and

triple-modular redundantsystems.Theseclassesare developedincrementallyby combining

(clientship and inheritance)severalfundamentalclassesand adding new methodsthat are

specificto the class.

Object orienteddesignfacilitates reusability[47, 5] and the classesin the library were

specificallydesignedfor reuse.Modeldevelopmenttime is reducedby the library becauseit

providesa kernelof classesthat canbeusedasis, or readily inheritedto createmorespecific

classesthus eliminating the needto developthem from scratch. The complexityof injecting

faults,initiating repairs,maintainingstatisticsetc. is reducedbecauseeachderivedclassinherits

fundamentalclassesthat providetheseservices.As a result,eachclassautomaticallyinjects

its own faults, initiates its own repairsand maintainsall statistics. At the beginningof a

simulation,the userprovidesthe fault and repairdistributionsandat the end, the userpolls

the classesto obtain the fault statistics. This automationmakesit possibleto model large

systemsmoreeasily.

3.2 Architecture

DEPEND is an integrated design and fault injection environment. It provides facilities to

rapidly model fault-tolerant architectures and conduct extensive fault injection studies. Figure

3.1 shows the DEPEND architecture. DEPEND can be executed on various hardware platforms.

The hardware specific code is contained in the simulation engine which provides a pseudo-

parallel run time environment. The objects provide the skeletal framework with which a user

can rapidly build a simulation model for fault injection and dependability analysis.

DEPEND is a functional, discrete-event, process-based [37, 60] simulation tool. The system

behavior is described by a collection of asynchronous processes that interact with one another.

These processes (also called coroutines) are independent threads of execution that can be sus-

pended and resumed at user specified points in the code [53]. The simulation engine implements

processes entirely at the user-level without operating system services. As a result, the processes

are light weight and do not execute simultaneously. The simulation engine provides a pseudo-

parallel environment. It does this by sequentially executing all processes scheduled to run at

11

User DevelopedSimulationModel

High-level DEPEND Objects

FundamentalDEPEND Objects

PortableSimulation Engine

• • •

HardwarePlatform

Sun Sparc

Hardware Platform

IBM RS/6000

• • •

Figure 3.1: The DEPEND architecture.

12

the same time and then incrementing the simulation clock. The current version of DEPEND

uses CSIM to support the process-based paradigm and the pseudo-parallel environment. CSIM

uses a single function call stack for all processes. When an active process is suspended, its run-

time stack frames and registers are copied into its static process control block. When a process

is resumed, the saved stack is copied back onto the runtime stack and the saved registers are

restored [15]. The original CSIM has been modified to support fault-injection and the ability

to abort, reschedule and kill processes.

An alternative to process-based simulation is event-driven simulation where a system is de-

scribed by a set of events and their associated actions. Even though process-based simulation

has a large context-switching overhead not present in event-driven simulation, it was selected for

several reasons. It is an effective and intuitive way to model system behavior, repair schemes,

and system software in detail. It facilitates modeling of inter-component dependencies, espe-

ciaUy when the system is large and the dependencies are complex, and it allows actual programs

to be executed within the simulation environment with minimal retrofitting.

3.2.1 User Environment

The steps required to develop and execute a model are shown in Figure 3.2. The user writes

a control program in C++ using the objects in the DEPEND library. The program is then

compiled and linked with the DEPEND objects. The model is executed in the pseudo-parallel

run time environment. Here, the assortment of objects including the fault injectors. CPUs

and communication links execute simultaneously to simulate the functional behavior of the

architecture. Faults are injected and repairs are initiated, according to the user's specifications

and a report containing the essential statistics of the simulation is generated.

3.2.2 The Object Library

The object library contains fundamental and complex classes. A fundamental class is not a

derived class. A complex class may be a derived class, it may consist of a combination of

several classes or both. The classes were designed with four criteria:

• Simulate the general behavior of a computer system component (Decomposability ,_ com-

posability).

13

writtenby userin object
C-_- / library

I Compileand linkI" I

j F,rint i

Figure 3.2: Steps in developing and simulating a model with DEPEND.

Name Description

Event Basic synchronizationmechanism. Processeswait at and setevents.

Active_elem

Injector

Fault Reporter

Simulates a server with various queueing disciplines (FCFS, round-robin.

etc.). Processes queue at server to model resource contention.

Automatically injects faults baaed on statistical distributions and trace files.

Compiles fault statistics. Displays MTBF, MTBR, availability and coverage.

Generates output of every fault injected and repair attempted.

Table 3.1: A few fundamental classes.

• Allow users to specify key parameters (Parameterization).

• Provide default functions to minimize design time (e.g. fault models, sparing policies).

• Permit easy reuse.

The fundamental classes provide basic functions like injecting faults and compiling statistics.

Some key fundamental classes are described in Table 3.1. Complex classes created from these

fundamental classes simulate components found in fault-tolerant architectures. Such compo-

nents include CPUs, self-checking processors, N-modular redundant processors, communication

links, voters and memory. This kernel of classes can be combined and replicated to simulate a

wide range of fault-tolerant architectures.

14

Name Description

Voter

Server

Link

NMR

Fault Manager

Simulates a basic voter with timeout. Default voting scheme: byte by byte

comparison. Allows user defined voting algorithms.

Inherits Active_elem. Simulates server with spares. Three sparing policies:

no spare, graceful degradation, stand-by sparing. Automatic repair and

reconfi_uration. Automatic injection of faults.

Simulates communication channels. Several fault types: link dead, packet

corruption_ packet loss and user defined faults. Automatic retry.

Simulates dual self-checking, triple-modular redundant and N-modular re-

dundant components.

Simulates software fault management schemes. Logs faults and shuts off

comoonents which exceed their fault threshold.

Table 3.2: Some key classes that model the architectural components of a fault-tolerant system.

Table 3.2 lists a few complex classes in the library. A detailed description of all classes can

be found in [22]. The next subsection describes the basic fault models provided by DEPEND

and the following subsections present three essential classes in the library: the fault injector,

the fault-tolerant server, and the fault-tolerant communication link. This is followed by an

example simulation program.

3.2.3 Fault Models

Functionalfaultmodels are used to simulatethe system levelmanifestationof gate-levelfaults

such asstuck-atfaults.Functionalfaultmodels areused becausethey are bestsuitedforsystem

levelfaultinjectionwhere the focus ison the behavior of a component due to a fault.Fur-

thermore,at thishigh levelofintegration,gate-levelimplementation faultsbecome prohibitive

[14].Functionaltestingapproaches and faultmodels formicroprocessorshave been presented

in [69,65, 52]. DEPEND providesfour types of faultswhich can be used to simulate specific

faultbehavior:

• Status faults.

* Process faults.

15

• Serverfaults.

• Data faults.

The simplest fault is the status .fault. It is called a status fault because a flag is set to

indicate that the status of the component is faulty. Methods of the injected component's class

can be queried to determine its state and, based on the status, specific fault actions can be

invoked.

A process fault either aborts or kills a process. Aborting a process entails dequeuing it from

an event or server queue, setting the "aborted" flag in its program control block (PCB) and

returning control to the process. The process can then poll its "aborted" flag and if set take

special action. Killing a process entails dequeuing the process, releasing all resources it has

acquired, and destroying its PCB.

A server,fault can be injected into any class that is derived from the Active_elem class (see

Table 3.1). A server fault causes the server to abort all processes queued for service and update

its fault and performance statistics. The aborted processes can then take remedial action such

as rollback or restart to simulate the effect of the fault.

When actual programs are executed with DEPEND, the data .fault can be used to corrupt

data elements used by the program. Given a mask, a size and a pointer to the data region, a

byte is selected randomly from the region and XORed with the mask.

Note that these basic fault models are general and only interrupts the simulation (e.g. stops

a server and dequeues all requests). All specific fault models, including the default fault models

provided with DEPEND classes, are built from these core fault models. For instance, the data

.fault model is used by FT_link (see below) to corrupt the contents of message packets routed

by the link. The basic fault models or the default fault models provided with a class can be

specialized by the user to create more specific fault models. These fault models can be derived

from low-level simulations or from measurements of existing systems. For instance, Choi [10]

simulates a processor at the gate-level and executes a workload while injecting transient faults.

The results of the faults on the behavior of the workload and the failure mode are stored in a

fault dictionary. The fault dictionary can then serve as the basis for the processor's system-

level fault model. Each time a process is aborted due to a transient fault in a server, one of the

failure modes can be selected randomly and used to model the process's failure mode.

16

3.2.4 Fault injector

The fault injector is a fundamental object of DEPEND. It encapsulates the mechanism for in-

jecting faults. To use the injector, a user specifies the number of components, the time to fault

distribution for each component, and the fault subroutine which specifies the fault model. The

distributions supported are constant time (mostly used for debugging), exponential, hyperex-

ponential and Weibull. The object also allows user specified distributions. When initialized,

the injector samples from a random number generator to determine the earliest time to fault,

sleeps until that time and calls the fault subroutine.

Initially, the injector used conditional failure distributions to determine the time to next

fault, under the assumption that a set of components have independent, identically distributed

failure distributions. For instance, for a system with two components using a gracefully de-

grading sparing policy, the time to failure of the second component, X, given that the first

component failed at time t is given by Pr[X < xlX > t]. For a Weibull time to fault distribu-

tion with rate parameter A and shape parameter o_, the conditional distribution is:

Pr[X < xlX > t] = 1 - exp _[(x+t)_-t_] (3.1)

This approach has several drawbacks. For non-exponential distributions, the conditional dis-

tributions become complex and cumbersome as repaired components are re-integrated into the

system or cold spares are activated. The conditional distributions depend on the sparing policy.

As a result, additional information regarding sparing policies has to be specified. The routines

used to generate random samples are more compute bound. Generating a random sample using

the inverse transform method for equation 3.1 requires and additional subtraction and an extra

call to the math library's power() function than for a Weibull distribution. For large simulation

runs, where thousands of faults are injected, the time spent on these additional calls becomes

significant.

The current version of the injector uses a table-based approach. An entry is kept for each

component, specifying its condition (OK, Failed), injection status (Injection off, Injection on),

time to fault distribution, and time to next fault. The algorithm used to determine which

component to inject is:

Initialize (performed one time)

do for all components

17

if (component is OK _ On)

compute and store time to fault

else

time to fault is oo

end if

end do

Main body

do forever

find minimum-time-to.fault among components

sleep (minimum-time.to-fault - current_ime)

if (sleep not aborted)

call fault subroutine

set time to fault of this component to oo

end if

end do

Any time a component is repaired or turned on, its time to fault is computed and entered

in the table. The injector is then awakened so that it takes the new component's fault time

into account.

The table-based approach is versatile. The time to fault distributions of the components

do not have to be identical and any user specified distribution can be supported. For example.

the full "bathtub" reliability curve can be model with DEPEND. The table-based approach

automatically takes the age of each component into account without using conditional proba-

bility distributions and averts the problem with modeling local and global times found in most

analytical tools [71].

DEPEND provides a workload dependent injection facility to model the workload/failure

dependency observed in [7, 31]. It can be used to test systems under stress conditions. To

implement a workload dependent injection strategy, a statistical clustering algorithm is first

used to identify high-density regions of the workload. These regions (or states) are used to

specify a state transition diagram that characterizes the workload [29]. Associated with each

state is a visit counter which counts the number of visits to that state and a fault rate. A.

which the system experiences in that state. The user provides a workload function which the

injector polls periodically to identify the workload state and to update its visit counter. For

18

example, the workload function may be the utilization of a processor or it may be any other

function that provides a measure between 0 (low workload) and 1 (high workload). Based on

an injection_interval specified by the user, the information from the state transition diagram is

used to estimate a weighted average failure arrival rate (WgtJambda) as follows:

N

Wgt_lambda = y_ visit_ratioi x Ai
i=l

where:

N is the number of states

counter for statej
visit_ratioi = total visits to all states

Once Wgtdambda is determined, it is used to compute the probability of a failure injection

(P_inject(t)) over the last interval t (= injection_interval) as follows:

P_inject(t) = 1 - e -wgt'l_'_baa×t

The fault injector illustrates what we mean by "providing a simulation framework". The

injector provides the basic algorithms and mechanisms needed to inject faults allowing the user

to concentrate on the application specific aspects, the fault model and the simulation of a fault.

Furthermore, the modular, object-oriented approach allows the user to easily experiment with

different time to fault distributions, fault models and workload functions. Other DEPEND

objects are similarly designed to provide the functionality that are commonly needed without

restricting the applicability of the object.

3.2.5 Fault-tolerant server

The server class, which is typically used to model CPUs and other processors, is an example

of a complex class (Figure 3.3) that is built from several elementary classes. It uses a fault

injector class to inject faults, the active_elem class to model the behavior of a server, and other

classes to compile and output fault statistics. It inherits methods from active_elem to simulate

the acquisition, the use and the release of a server and to provide several service disciplines

including, first come first serve (FCFS), round-robin and pre-emptive round-robin.

19

l '- II "'°irl_l_lor repair

I t

I--I1= I---I
p_Ir_ry b_k'up b_k_p

F'aullt- Tol_rRn t

Sorver

s_P4by I _toh I

_ng

- I I I I_tlOI1 _ qoeu! rq..lelI queue _ qug[l*
r-r-r- r-r-r-- .o.

wtmnry prirMw sxtm,u'y

? ? ?
I I

I :=- II =+ I

Figure 3.3: The Fault-TolerantServerObject.

The server offers three sparing modes: the no spare mode, the graceful degradation mode.

and the standby cold sparing mode. In the graceful degradation mode, all the spares operate

on incoming requests. The entire server fails when all the spares become faulty. In the standby

sparing mode, only the primary server operates on requests. When it fails, a reconfiguration

takes place and a healthy spare becomes the primary server. The entire server continues to

function as long as there is at least one healthy server. The number of spares and the type of

sparing policy is user selected.

The server provides three default fault types: permanent faults, transient faults and user

defined faults. Transient faults last for a specified period of time, after which the server returns

to a healthy state where it can be used again. When a transient or permanent fault is injected

in a server, the server fault model is used to dequeue pending requests an place the server in a

hung state. Other fault models can be simulated by specifying user defined faults. To simulate

user defined faults, the server invokes a pre-specified fault method, written by the user, that

can simulate any fault action a user requires.

The user can customize the behavior of a server by specifying, among other things, the

reconfiguration time, repair coverage and the fault arrival rate. The user can also override the

default repair and fault behavior of the server by specifying user written methods to be invoked

when a fault or repair event occurs.

2O

3.2.6 Fault-tolerant communication link

Another complex class is the link shown in figure 3.4. [t is designed to simulate various types

of communication links. It consists of a redundant set of communication links with redundant

connections from the links to the ports. The link is built from several classes. Instances of the

server class are used to model the ports and the links. An instance of the injector class is used to

inject faults. The rest of the link class consists of additional software to model the behavior of a

communication medium. The link transfers messages between specified ports. Once a message

reaches its destination port, it is queued until a process dequeues the message by invoking

the receive() method and providing the port number. To initialize a link, the user specifies:

the number of redundant links and redundant connections to the links, the number of ports,

the time required to send data via the links and the types of faults to be injected. The class

offers automatic retry. Messages sent back and forth contain checksums. If a checksum error

is detected by a receiving port, a negative acknowledgment is sent triggering a retransmission

of that message. The number of retransmissions is user specified. Several default fault models.

PORT I

F=uR - TolorarR Cornnl_Jn_.ar/on LJnl¢

Figure 3.4: The Fault-Tolerant Communication Link.

including faulty link, faulty port, lost message and corrupted message are offered. The server

fault model is used to simulate a faulty link and faulty ports. A lost message is modeled by

failing to send the message to its destination. Messages are corrupted using the data fault model.

If a link or port is faulty or if a message is lost, the message does not reach its destination.

The sender times out waiting for an acknowledgment and then retransmits the message. Like

the server object, these default fault models can be overridden by supplying user written fault

21

models. All the redundancyand fault-tolerantfeaturesdescribed,areswitchselectablesothe

userhasa rangeof optionsand canselectfrom a simplelink with no fault-toleranceto a link

with all the fault-tolerancecapabilitiesdescribed.

3.2.7 Programming environment

The C++ object-oriented language is used to specify a DEPEND simulation model. The C++

language was chosen as the user interface to DEPEND for several reasons. First, it means

not having to learn an esoteric simulation language; only knowledge of C÷+ is necessary.

Furthermore, the entire C++ programming environment is available to the user. DEPEND

enhances C++ by offering simulation facilities not available through regular C-I-+ constructs.

The user can use actual C+q- or C programs as a part of the simulation model. This makes it

possible to test proto-type software algorithms within DEPEND. Cq-+'s strong type checking

makes it easier to write large simulations efficiently with fewer bugs than other languages.

Finally, C-Fq- produces efficient code, and the C++/UNIX environment is widely available.

Figures 3.5 and 3.6 show a simple, example program that illustrates the programming

environment and some of DEPEND's features 1. The program models two processes that

communicate via a fault-tolerant communication link. The link is declared in line 2 to consist

of 2 links, using the graceful degradation spareing mode. There are two ports connected to the

link and each port has an additional spare port. The create() statement in routines sire() and

receiver() distinguish them from ordinary C++ subroutines, sire() and receiver() are light-weight

co-routines that execute in a pseudo parallel environment. Each time the create() statement is

executed an instance of the co-routine is created.

The main co-routine initializes the link. Lines 8 through 13 specify the cost of sending a

message, the time to send acknowledgments and that automatic retry is desired. Lines 14-17

specify the percent of messages lost and corrupted and they also specify the range of bytes (from

the beginning of the message) that can be corrupted and the mask to be used. If these two types

of faults are not sufficient, the user can opt to specify his or her own fault routine by removing

lines 16 and 17 and including line 18 ("//"is a C++ comment delimiter). Lines 19-22 specify

the failure rates and distributions of the ports and the links. By default, permanent faults are

1The program is written in "pseudo" C++ for simplicity and ease of understanding.

22

01) #define NUM 2

// link with one spare and two ports and I spare port for each port

02) FT.link In ("link", FT_GRACEFUL-SPARE, 1, 2, 1);

03) Event done("event');

04) Int cnt;

05) void main(int argc, char* argvD)

o6) (cr_ate("mAin");
07) void recv(int);

08) ln.msg.xferr-time(10.0, 0.01);

09) In.set.checksum();

10) In.set.auto.retry();

11) In.set.hum-try(3);

12) In.set _timeout (500.0);

13) In.set.reply.xfer(10.0);

14)

is)
16)
17)

18)

ln.msg.loss(0.01);

ln.msg.corrupt (0.05);

In.set.corrupt.range(0, 6)

In.set.mask('2');

// In.set.msg_fault.func (Szmy ./suit -func);

19)

20)
21)
22)

In .port .expinject (0.000001);

In.port .switch.time(1000.0);

In.port.swit ch-coverage(0.999);

In.set _weib.inject (x,y);

23) Ln.detailed.record-_n() ;

24) ln.fmject-start ();

25) for (ill to NUM)

26) receiver(i);

27) done.wait();

28) report();

29) In.fault.report.full();

}

// main control program

// 10 units startup, 0.0l per/byte cost

// checksum the messages

// retransmit if there is an error

// retry 3 times before giving up

// wait 500 units for ack

// 10 units to send reply ack

// 1% msgs lost

// 5% msgs corrupted

//corrupt any of 1st 7 bytes of msg

//XOR byte with mask = '2'

//optional, user selected fault

// failure rate of port

// time to switch to a spare port

// prob. switch is successful

// Weibull failure rate for links

// detailed record of all injections

//start the injector

// start processes that send and

// receive rnsgs at these ports

// wait for simulation to end

// produce fault report

Figure 3.5: A simple example program using DEPEND - the main co-routine.

23

44)

4s)
4e)

}

30) void receiver(int port.id)

31) (create("recv'); // this is a co-routine - not a subroutine

32) int stat, finished -- 0;

33) while (!finished _'& ha.cond._k()) {

34) do computations ...

35) put results into msg ...

//send(to, from, msg, size)

36) ln.send((port.id+l)%NUM, port.id, &mag, sizeof(msg));

37) int reply -- ha.receive(id, mag[id], stat);

38) if (stat) {

39) ... received mesaage without error ...

40) ... do more computation ...

41)) else {

42) ... message as error - take remediM action ...

43) }
}

cnt-;

if (cnt ---- 0)

done.set();

/" optional fault routine to do specific fault injections

4"/') void my_fault.func(int &rnsg)

48) { code to corrupt fields in the message ... } */

Figure 3.6: A simple example program using DEPEND - the co-routine.

injected into the ports and links because a fault type has not been specified. If transient faults

or user defined faults are injected, repair times, coverage and user defined fault subroutines for

link and port faults can be specified.

The main co-routine creates two of the receiver() co-routine (line 26) and then goes to sleep

waiting for the event done to be set before printing the performance (e.g., throughput, response

time etc.) and fault (e.g., MTTF, availability, fault and repair times) reports.

The general structure of the receiver() co-routines is shown in lines 30 through 46. Each co-

routine performs some computation, puts results in a message and then sends it to the tandem

co-routine. Each co-routine then waits for a return message, performs additional computations

and repeats the entire process until all computations are complete or until the communication

link fails (i.e., both links are failed or 1 port has failed). The last co-routine to complete wakes

up the main co-routine by setting the done event.

The detail of the simulation model depends on the user. For the computations (line 34, 35,

etc.), the user may choose to simply forward the simulation clock and the data in the messages

may be fake, meaningless values, or the user may execute actual code and send real data back

and forth, making it possible to test actual programs such as algorithm-based fault-tolerant

24

programs,communicationprotocolsandthelike. Suchanapproachwasusedto determinethe

fault sensitivityandfailurebehaviorof twoloadbalancingheuristicsoperatingin a distributed

system[20].

The simpleexamplein Figures3.5and 3.6 illustratesseveralbasicfeaturesof DEPEND.

DEPENDprovidestheframeworkandthegeneralbehaviorofthe fault-tolerantcommunication

link. The specificbehavioris controlledby the userby providingkey parameters,specifying

optionsandbyfurnishingfault subroutines.Theuserisrelievedfromsimulatingtheoperations

of thesimulationmedium,theports,thechecksumminglogic,theautomaticretry logicand the

injection of faults to the links,ports and messages.Severalmethodsareavailableto interact

with the classandreact to importanteventssuchaslink and port failures.Theexampleshows

two methods:a polling function that returns the status of the link (cond_ok(), line 33) and a

status variable returned by the class (star, line 37). In addition to various other polling functions

such as functions to determine the status of the ports, the number of messages that have been

corrupted and the overhead of sending acknowledgments, there are signals that are set any time

failures and repairs occur. Co-routines can sleep until these signals are set and then wakeup

and perform specific tasks.

The example also demonstrates that the impact of different number of spares, different fault

arrival rates and distributions and repair coverage can be easily modeled by simply changing a

few parameters. A larger, common-bus system consisting of several ports and receiver() routines

operating on these ports can be quickly modeled by increasing the number of ports (line 2) and

appropriately increasing NUM (line 1). Distributed algorithms can be tested for correctness and

to determine their reaction to faults in the communication medium. Other architectures, such

as the hypercube, can also be modeled by creating several instances of the link class, one for

each link in the cube. By modifying the link declaration, a comparative performability study

can be conducted to determine whether the cold spareing or the graceful degradation spareing

mode is best suited for a particular application..

3.3 Comparison

Table 3.3 compares the features of several simulation-based system level dependability analysis

tools. Rainbow Net and Metasan are purely probabilistic tools. NEST and REACT allow both

25

Simulation
Functional ProbabilisticTool

NEST _/ _/ _/
RAINBOW NET _/
METASAN
REACT
DEPEND

¢

,/

Execute
Code

,/

Software
Model

Process Data Simulation
Faults Faults Acceleration

Table 3.3: Comparison of the features of several simulation tools.

functional and probabilistic simulation, and NEST can execute actual routing algorithms. How-

ever, neither tool provides facilities to inject process or data faults. Only DEPEND provides

an environment to represetn application software at an abstract level and use it to perform

application specific system analysis in the early design phase when actual code does not ex-

ist. Furthermore none of the tools provide acceleration techniques to reduce simulation time

explosion.

26

Chapter 4

Tool Capabilities

This goal of this chapter is to answer the following questions with two examples. Given the

large number of analytical tools and petri-net based simulation tools, what is the need for

functional (behavioral) simulation tools for system level dependability analysis? What addi-

tional information and capabilities can they provide over analytical tools and fault-injection

environments?

4.1 Behavioral Modeling

Analytical and Petri-net tools only use probabilistic modeling to represent system behavior. In

essence, these tools pre-define a system's fault behavior with probabilities and distributions."

Because DEPEND also allows behavioral modeling, the fault behavior of a system does not

have to be pre-defined. Rather, with DEPEND, the fault behavior can be determined from the

simulated system. This section presents a study conducted with DEPEND to illustrate this

claim.

A distributed system using a centralized, prediction-based load balancing heuristic is evalu-

ated under various types of faults. The heuristic has been shown to be very effective in reducing

the mean response times of the processes under normal operating conditions [26, 20]. The ques-

tion is how will it perform if the system is subjected to faults? Will the load balancing heuristic

make the system less robust? Here the measure of robustness is the mean response time seen bv

the processes. To answer these questions, DEPEND is used to simulate a distributed system.

27

Trace File

(3-

arrive

oj
_1',=11=I_lmt_ mm

Fail Nodes

Proces=es executed on all nodes.

_'°I !

Corrupt or destroy status _ges

Figure 4.1: Distributed system executing the load balancing heuristic.

Because actual code can be executed within DEPEND, the complete load balancing heuristic,

written in C++, is executed upon the simulated system.

The distributed system was simulated using one link class to represent the communication

channel and several servers to represent the nodes in the system (Figure 4.1). Processes arrive

at node 0 where the load balancing heuristic assigns it to a node estimated to provide the lowest

response time. The assignment decision is based on the resources the process is predicted to

use and the current assignment of processes to the nodes. This information is maintained in

a database in node 0 (Figure 4.2a). When a process completes, its actual resources used is

sent, via a status message, to node 0 where it is used to update the process's resource usage

history and delete its entry from the process assignment table (Figure 4.2b). Each process is

represented by its CPU and I/O requirements. A trace file obtained from measuring the CPU

and [/O used by processes executing on a VAX 11/780 (running 4.3Bsd UNIX) over a period

of one week is the source of the processes. Details about the heuristic can be found in [20].

The load balancing heuristic is started and processes are fed into the system. Meanwhile.

the default fault models in the link and server classes are used to corrupt fields in the status

messages, destroy status messages and fail node 0 and erase its database. These faults corrupt

or destroy the database and ultimately impair the assignment decisions made by the load

balancing heuristic. The mean response times of the processes are measured to determine the

impact of the faults.

[f a purely probabilistic modeling tool were used for this study, the user would have to

pre-specify:

28

a. Scheduling Node's Database

Process Resource
Usage History

Processes Previous CPU & I/O Usage History

grep

stale transiliondiagrammaintains
psstresource usageof sacti prom
and is usKI to predict futureresource
usage.

Process assignment
Table

Node 0 Node1 Node n

cc 0.2 / 100 make 1.2 / 250
wc 0.001 / 500 awl< 0,005 / 500
Id 0.03 / 800

s2sim 8.2/1110

processes assignedto each node and their
predictedresourceusage is storedin the table
and usedto determinewhere to place the
next processthat arrives.

b. Status Message

List of Completed Processes

process: make _

Corrupt

J

Statusmessage senl by all nodesto node 0.
Contains listof all processesthat have
completedand the actual resources they used.

Figure 4.2: Database maintained by Node 0 and the status messages it receives.

29

• the probability that a fault will corrupt the database.

• how each fault will corrupt the database.

• which portions of the database will be corrupted.

• quantify the extent of corruption.

• quantify how each corruption will impair the placement decision made by the load-

balancing software

Needless to say, these factors are extremely difficult to obtain without a thorough prior fault

injection study and they pre-define the fault behavior of the system. Because D EP END executes

the actual software, these parameters are the results of (and not inputs to) the fault-injection

experiment. Only the fault arrival rates and the types of faults injected need to be specified.

Thus, DEPEND can identify the failure mechanisms, obtain failure probabilities, and quantize

the effect of faults. It can be used to select the key features that must be modeled and help to

determine and specify both the structure of, and the parameters to analytical models.

Only a summary of the results of the fault injection experiments are presented in this section.

Detailed results can be found in [21]. The fault injection experiments show that unless errors

are injected into the node 0 in rapid, sustained bursts the impact on response time is minimal.

This finding indicates that the database is regenerated quickly after each fault and there is no

need to save a backup copy. The impact on response time when status messages are corrupted

is shown in Figure 4.3. Interestingly, as the percent of messages corrupted increases beyond a

certain point (about 10%), the increase in response time reaches a plateau. Once more than

10% of the messages are injected, the database becomes so corrupted that the assignments are

made randomly and fllrther corruption has little impact. This behavior shows that the heuristic

is robust and there is no need for additional, expensive fault-tolerant mechanisms.

A single distinguishing advantage of behavioral modeling over probabilistic modeling is

accentuated in the results obtained when status messages are destroyed. Figure 4.4 (the curve

labeled 'before') shows that the degradation in response time continues to increase without

reaching a plateau. Upon close examination, the increasing poor performance was found to

be caused by an implementation detail of the load balancing heuristic. Once the heuristic was

modified, the erratic increase in the response time ceased. Thus by using behavioral modeling, it

3O

Mean

Response

Time
in

sec. 2

0

m

J

I
5 10 15 20

Percent Messages Lost

Figure 4.3: Impact of corrupted status update messages.

was possible to not only quantize the impact of the various faults, determine whether additional

fault-tolerance mechanisms are needed if the system is operated in an adverse environment, it

was also possible to verify the heuristic and identify a design feature that makes it susceptible

to a specific fault type. Not only are such studies beyond the range of analytical tools, to the

authors' knowledge, this experiment would be difficult to conduct with software fault injection

tools like FERRARI [36] and FIAT [18] because they cannot evaluate software running on

distributed systems.

4.2 Modeling Real Fault Scenarios

DEPEND uses a combination of behavioral and probabilistic modeling to simulate many re-

alistic fault scenarios. In this section, a simple example is used to illustrate how DEPEND

models latent errors that can substantially degrade system reliability. Latent errors can remain

undetected in a system for long periods of time and are a potential hazard [8]. A measurement

31

Mean

Response
Time

in
sec.

20--

15--

10--

5--

0

0

I
j,

J
J

J

J
/

/

/

/

..o
/

/

/

/

/

/

/

/

/

/

Before

/

/

/

o -- After
_-"* .--O O

I I I i I I

5 lO 15 20 25 30

Percent Messages Lost

Figure 4.4: Impact of destroyed status update messages - before and after design change.

study of a VAX 11/780 [9] has shown the mean latency of an error can be in the order of min-

utes (# = 44rain., _ = 29rain.) during peak hours and to several hours (# = 8hr_., (7 = 4hr.s.)

during off-times.

Modeling latent errors is difficult with Markov models for several reasons. First, the state

space of the Markov model can be large for even small systems if each latent error and its location

within a component is represented. Second, simplifying assumptions such as independent repair

processes must be eliminated in order to accurately evaluate the impact of latent errors. For

example, in a self-repairing system like the Tandem Integrity $2 (detailed description can be

found in Chapter 5), the healthy processors reconfigure or repair a failed processor. If latent

errors are detected in the healthy processors during a repair, the system fails. Modeling this

inter-component dependence typically requires that the entire CTMC, its failure and repair

process, be evaluated together thus potentially leading to large, stiff models. In [16], the

authors present a novel decomposition technique to avoid such large, stiff models. With their

approach, the repair coverage is evaluated in isolation and then 'adjusted' to account for the

32

EffO_D _m
ak_rrr_t un_

pmvsu dpt_'$$
it

_S_klct system or _opl_:ation_oaca

o.--'.llo,--o,rlapplx:atJonspacJ system space

bcbranch
or_ of 3 CPUs

L-.I ...I'" I Loc_n

En.om ac_vafod...

Figure 4.5: The error injection process that models error latency.

probability of a second, independent error in another component. The example below extends

this analysis to also evaluate the impact of near-coincident errors due to latent errors in a

repairing CPU. To do this, the example models the inherent dependencies that exist among the

system components.

1

Te" I An°thermc°vwY II inprogress?

I R_domly pickCPUto i

Latent error insystemslo_:,? i

(l--.f)

(I<) ,

I Perman.t error?_ Reconfiguro I

I"'°'°p° /

Erase latent
errorsin
restored

CPU

Figure 4.6: The repair process that considers the state of the other CPUs in the system.

Figure 4.5 illustrates how latent errors are injected into a system with three processors.

DEPEND uses a chronologically sorted queue to maintain the latent errors injected into the

system. Among the information associated with each latent error include the time at which

the error is injected, its location (the component and memory address), and its latency period.

Typically, the errors are detected when their latency period expires. However, the errors can

be detected earlier by the repair process. Fault injection experiments of the Tandem Integrity

$2 have shown that latent errors in the repairing processor are detected with high probability

33

Description Value assigned

Error Arrival Rate, ,X1 0.01388

Repair Rate, /J 30.0
Percent Transient error, r 0.99

Repair coverage, /3 0.98
Latent error in system space, e 0.05
Latency for system space, exponential with mean 15.0

Latency for application space, exponential with means 1, 2, 4, 6 & 8
Prob. Failure due to latent errors in repairing CPU, _, 0.1

Table 4.1: The parameters used. All times are in hours.

during repair and reconfiguration because much of the system is exercised during a repair.

Figure 4.6 is a flowchart of the repair process that models this phenomenon. It is invoked

each time a latent error is activated. Note that the repair process models near-coincident

errors caused by a second, independent error in another processor (box 1). The dynamic

determination of the repair coverage which depends on whether there are latent errors in the

repairing processor is shown in boxes 2 and 3. To reiterate, by storing latent errors in a queue,

DEPEND can dynamically model the actual activation time of latent errors which is dependent

on: 1) the component the error is located in, 2) the location within a component, 3) the failure

rate of the components in the system, and 4) the system's repair scheme.

The example is evaluated under three different conditions. First, permanent and transient

errors with no latency are injected (M1). Second, near-coincident errors due to a second,

independent error in another processor is modeled but error latency is not considered (M2).

The decomposition technique in [16] model this second condition. Third, the simulation model

described above is evaluated. It includes the conditions in M2, and it also considers near-

coincident errors caused by latent errors (M3). The specific parameters of the models are

listed in Table 4.1. Figure 4.7 shows a 33% decrease in MTTF when latent errors and their

impact on system reliability is taken into account. The result emphasizes the importance of

modeling real phenomenon such as latency, and it demonstrates that by so doing, more precise

evaluation of fault tolerant mechanisms and repair schemes are possible. Later, in Chapter 7,

the "staggered machine failure" phenomenon found to be caused by correlated errors [73] is

mimicked by injecting correlated errors with different latency times. This more faithful model

34

is found to produce MTTF figures that are an order of magnitude larger than those produced

with traditional models that assume correlated errors are detected simultaneously.

M
T
T
F

1200 --

ii00 -

I000 -

900 -

800

700

...... basic (M1)

near-coincident (M2)

near-coincident &: latency (M3)

1 I I l I

0 2 4 6 8 10

Mean Latency (hrs.)

Figure 4.7: Comparison of system MTTF for the three models.

4.3 Discussion

This Chapter uses two examples to highlight the benefits of using DEPEND during the in-

termediate stages of system design. With analytical tools and petri-net tools a system's fault

behavior must be pre-defined. DEPEND's integrated fault injection and functional simulation

environment allows detailed modefing of system behavior and fault injections that help deter-

mine the system's fault behavior. The first example demonstrates how software behavior under

hardware faults can be studied and how DEPEND can also be used to verify the software and

identify design features that make it susceptible to particular fault types. The second example

illustrates how accurate modeling of realistic fault scenarios and the ability to consider the

inter-component dependencies provide significantly different MTBF measures than those ob-

35

tainedwhentheseissuesarenot considered. The ability to perform these sorts of studies in the

early design stages is crucial to ensuring that a system meets its dependability specifications.

36

Chapter 5

A Case Study

This chapter describes the Tandem Integrity $2 fault-tolerant system. It also presents the simu-

lation model of an $2 like system developed with DEPEND. The primary reason for selecting the

Tandem Integrity $2 as the target system is that we have a hybrid injection and measurement

environment [75] for an actual Tandem Integrity $2 machine. With this hybrid environment,

injection experiments on the actual machine are conducted and used to validate the simulation

methods and the models developed. A brief description of the hybrid environment and the

setup used to conduct the validation experiments can be found in chapter 6.

5.1 The Tandem Integrity $2 Architecture

The Tandem Integrity $2 fault-tolerant system [34] is shown in figure 5.1. It is a triple modular

redundant system (TMR). Each CPU is a MIPS R.3000 RISC processor with an on-chip virtual

memory mechanism and a separate clock. The processors execute the same instruction stream

simultaneously. The processors are synchronized and their requests are checked by the voter

when global memory is accessed, I/O is performed, or 2047 cycles have elapsed. If there is a

discrepancy during voting, the processor in disagreement is shut down. The faulty processor

performs a power-on self-test (POST), and if successful, the system is halted and the contents

of the good processors are copied to it. The POST takes approximately 70 seconds and the

re-integration takes approximately 2.0 seconds for a system with 8 Mbytes of local memory.

The local memories in the Integrity $2 do not have parity or ECC circuitry. The Integrity

$2 relies on memory scrubbing to correct transient memory errors. The TMRC contains the

37

, oPO,t Ii I
Memory Memory Memory

I

| I

I lop I

RSB

t Controller I

=P =P
I Controller tI

II
I ,op I

Mtrrore
Disks

Figure 5.1: The Tandem Integrity $2 processing subsystem.

Percent of Time Re-integration
CPU is Idle Time

99% 30 sec.

59% 2 min. 25 sec.

37% 3 rain. 46 sec.

27% 4 min. and 5 sec.

16% 4 min. and 40 sec.

0% 5 min. and 29 sec.

Table 5.1: Measured global memory re-integration times with varying machine idle percentages

voter and up to 128MB of global memory. The primary function of the TMRC is to vote upon

the transactions sent by the CPUs. The global memories are protected by parity. When a

parity error is detected by the TMRC, the backup memory takes over. A global memory is re-

integrated in the background, interleaved with ordinary processing. The re-integration time is

load dependent. Table 5.1 contains the measured re-integration times from a system with 32MB

of global memory. Global memory re-integration has lower priority than CPU re-integration

and is aborted and restarted in case of a CPU re-integration.

38

5.2 Simulation Model

To develop an accurate simulation model of a Tandem Integrity $2 like system, several key

characteristics of the Tandem Integrity $2 system are simulated. These include:

1. the loose synchronization policy of the Integrity system. The fact that the processors

idle at the voters to synchronize and the exact time needed by the voting operation are

accounted for in the model.

2. the CPU (with its local memory) and the global memory structure that is unique to the

Integrity system.

3. the functional behavior of the error-detection mechanisms of the CPU and global memory

structure.

4. the CPU off-line POST and the on-line re-integration process and the global memory

background re-integration process that are unique to the Tandem Integrity.

5. the behavior of the Tandem Integrity when a CPU and global memory re-integration

occurs simultaneously (prioritized re-integration).

These details of the system architecture and how it reacts to faults were determined by studying

its layouts, descriptions and manuals, discussing the matter with its designers and conducting

several fault injection studies (in addition to the validation experiments mentioned below).

Simultaneous injections into various components of the system helped to uncover interesting

characteristics of the system that were subsequently incorporated into the Integrity $2 simula-

tion model.

The simulation model of the Tandem Integrity $2, developed with DEPEND, is shown in

figure 5.2. The blocks on the right are the DEPEND classes used in the simulation model. The

block on the left summarizes the program written to create the simulation model and control

the operations of each of the components.

The NMR. class in the DEPEND library is the primary object used in the simulation. The

NMR class simulates dual self-checking, triple-modular redundant and N-modular redundant

systems. The servers idle until they receive a task to process. They then execute for a specified

time period and feed their results to the voter. The voter waits for all the servers and then

39

executesa votingalgorithm.A timeout conditionisused to prevent hanging in caseswhere a

serverfailsto reportto the voter.The NMR classprovidestwo votingalgorithms:bitstream

votingand error basedvoting.The bitstream votingscheme performs a bit by bitcomparison

of the data depositedby the servers.The errorbasedalgorithmflagsa server'sresultas being

faultyifan errorhas been injectedintothe server.This option was used in thissimulation

ControlProgram

[nit_dize ot_ects - specify parameters

set exlx_e_tial injection

sl_ci_" _ ,rrival rates

specify r_iatelp_on times

specify numb_ _ servers in _h TMR

etc.

Start e=w.hobj_..t

loop until done:

do 2047 in_mctiot_

wait for voting to complete

if faulty pcoces_or initiate POST

call global n_mow's e_rorbased
votes"

if faulty global memory initiate
reinte$nttion

if any subsystem has failed
reboot the system

if processor ready for re-integration
halt systemand re-integrate

fastforwecdtonextevent

end loop

2047 ¢=,,r_les

4o PO4P_

_-£ne.._lZltt •

r_moot

fauXC o1:faX1
8£2nal

votiz_ ecIo1ete
_aal

e_¢or baud

voCAae

reboot

=e-integrate

fault ot fall
s£gnal

DEPEND objects

P_rtg Core NMR

fault £nJ_to= I

m@L'Tql_ ll@L"q_r ll@rv@l_

1 2 3

voto_

Global Memory

fault injector

o--

1 2

vote=

r

@

P
a

1
r

c

p

t
C

NMR

Figure 5.2: Simulationmodel of the Integrity$2 system developedwith DEPEND.

because the processors were not given real data to process. The NMR shuts down the servers

with faulty results. Automatic repair schemes are not provided, but functions can be called

to repair the individual servers. This feature is used to simulate the automatic re-integration

feature of the Tandem Integrity $2. The NMR's fault injector injects latent and correlated

errors.

The processing core of the Integrity $2 is simulated with a NMR class containing 3 servers.

Each server simulates a processor board containing a CPU and a local memory. The NMR's

injector is used to inject errors into both the processor and the local memory.

4O

The two global memory boardsaresimulatedwith a NMR with 2 servers.Every2047

cycles,when the processorssynchronize,the global memory'serror based voting function is

explicitly invoked by the control program to check each server and shut down any that has

an active error. This simulates the actual operation of the Integrity $2 system because parity

errors in the global memory are detected when the processors synchronize at the voter to access

global memory.

The control program in figure 5.2 is the only part that is written by the user. It de-

clares instances of the two DEPEND objects and initializes and customizes them. Initialization

consists of specifying the error arrival distribution, the error arrival rate, the error latency

distribution and so on. Then each object is "started" causing them to automatically perform

tasks based on the parameters specified. All actions are automatically logged and the user can

call functions to obtain a detailed report of every fault or repair. In addition, statistics such as

availability, MTBF, the number of faults injected, the mean time between repair and the repair

coverage are available.

The control program simulates the execution of 2047 instructions and the voting process.

If any detectable errors are found in any of the components during voting, the components

are shutdown. The status of the system is checked to determine whether it has failed {i.e.

two CPUs or both global memory boards have failed). If the system has failed, it is rebooted

and the simulation restarts. If the system has not failed, a background re-integration process is

started for any component that was shutdown earlier by the voter. Finally, the control program

checks to see if re-integrations initiated in an earlier cycle has completed. If so, they are handled

based on the component type (CPU or global memory) as described in the previous section.

Though not shown in figure 5.2, the memory scrubbing process is also simulated. Although the

simulation can produce many results, the one we are most concerned with is the mean time

between system failures (MTBF).

To summarize, this chapter describes the Tandem Integrity $2 architecture and presents

the overall simulation model developed with DEPEND. The next two chapters describe specific

aspects of the simulation model such as the approach used to model software behavior under

hardware faults and the acceleration techniques used to execute the simulation and produce

statistically valid results.

41

Chapter 6

Software Behavior Under Hardware

Faults

The impact of software on system dependability is a primary concern because software is a major

component of a system. One aspect is software reliability, which is concerned with design errors

in the software. Another aspect, and the focus of this chapter is the behavior and the effect of

software on hardware faults. In the early design stages of a system, a designer has a general idea

of the structure and the underlying algorithm of the application software, or ha_ access to the

software that will be ported to the new system. An effective design strategy at this early stage

is to evaluate the system while executing an abstract representation of the application software.

This can provide key application dependent parameters that impact system dependability. It

permits meaningful application specific evaluation and trade-off analysis of function and system

level detection and recovery mechanisms.

In this chapter, we present a simulation-based software model that uses a probabilistic control

flow graph to represent a program at an abstract level. The model is executed on a simulated

system to obtain application specific error latency distributions and evaluate two functional

error detection mechanisms. Error latency distributions obtained from the model are validated

by comparing them with those obtained from running the actual programs on the Tandem

Integrity $2 system. The impact of program control flow on error latency times is stlldied, a

model of the detection process of a RISC-based system is developed and the need for application

specific analysis of functional detection schemes is demonstrated.

42

Many studieshaveevaluatedthe behaviorof softwareunder hardwarefaults [1, 11, 14,

36, 44, 48, 18, 75]. Actual programs are executed on simulated or real processors in which

errors are injected. These studies require an actual system or a detailed model of the hardware

architecture. Tools like FIAT and FERRARI verify and study software systems by injecting

software-implemented faults into actual programs. Laprie [39] uses a Markov model to evaluate

the reliability of software systems during their operational life. The focus of the work is on

software design errors. In [64], a stochastic model of error propagation is developed with a

digraph that represents the interconnections between the hardware and software models. The

propagation times are based on random variables with general distributions. In [51], a control

flow graph automatically generated from syntactic analysis of a program, is used to estimate

execution times. DEPEND [24] and REACT [12] provide a simulation-based fault injection

environment to analyze the dependability of hardware architectures. As such. there are no

mechanisms to study, at the early design phase, software behavior under hardware faults.

The software model presented runs within the DEPEND environment and extends DE-

PEND's ability to study software issues in the early design stage [25]. The high-level abstrac-

tion greatly reduces simulation time explosion and permits hundreds of error injections within

seconds. Large observation periods are possible and allow collection of detection latency times

that are in the order of minutes. Such large detection latencies are typical of real programs. Col-

lecting them allows evaluation of detection schemes under realistic conditions. The contribution

of this work is a method to:

1. Create a high-level abstract representation of application software that can be used to

obtain application specific parameters that affect the dependability of a system.

2. Evaluate function and system level detection and recovery schemes within the context of

application programs.

3. Study the impact of program control flow on one parameter, the error latency distribution.

4. Develop a model of the detection process of a RISC-based processor.

5. Provide feedback early in the design phase.

43

6.1 Model Overview

The software model environment is shown in Figure 6.1. The model consists of programs

that are represented by probabilistic control flow graphs, G, and a virtual memory system, M,

within which the programs execute. Contention for resources is modeled using the first-come-

first-served or round-robin scheduling discipline. Errors are injected into the physical memory

space.

Programs

/
p2

Virtual memory

pl villual pages

p2 virtual pages

pn vl_Jal pages

Physical
memory

__ _ Shared
location

o

\
m

Simulate
contention
at resources _/_

-_-- Error

\

2
I
n
!
e
c
t
o
r

Figure 6.1: The complete software model execution environment.

The distinguishing feature of the software model is the virtual memory system M and the

Link between G and M. The virtual memory provides two functions. First, it permits simul-

taneous execution of several programs allowing evaluation of their combined impact. Second,

it allows these programs to share pages in memory. Interprogram communication, and hence

propagation of errors among programs, is modeled with shared pages. In fact, the shared mem-

ory primitive can be used to model various communication paradigms. In [42], the authors

give a convincing argument for the claim that "variable sharing" is a close reflection of corn-

44

puter hardwareandit is a primitive uponwhichall other realizabledistributedmodelscanbe

described.

The error occurrenceprocessis modeledby injectingerrorsinto the physicalmemoryand

allowingthesimulatedexecutionof G, to discover the error. Manifestation of transient hardware

faults are modeled as memory errors. A similar approach was taken in [44], in which the authors

model all control flow errors as memory errors. The model is realistic for faults in the memory

subsystem, however, it can also be applied to several types of faults in the processor. For

instance, a fault in the ALU can propagate, eventually manifesting as incorrect data written

to memory. Similarly, errors in the bus can cause incorrect data to be written to memory or

written to the wrong location. Errors in memory mapped registers and I/O devices can also be

represented by memory errors.

The user provides a control flow graph of an algorithm, the location of the memory accessed

by each node and the total virtual memory used by the graph. The memory access pattern is

derived from the graph. The model is hierarchical allowing designers to refine their abstract

program models as more information is available. The software model simulates the execution of

the graph on the underlying hardware. Outputs of the model include detection latency times.

error propagation times, the probability of error propagation, and detection coverages. The

software model is intended for use in the early design stages when an actual system does not

exist and details of the applications are not known. It is not meant to replace fault injection

studies of existing systems.

6.2 Model Description

The software model SW is defined as

SW

where:

= (M, (G,S, Ex) +, 1) 1

• M is the virtual memory system.

• G is a probabilistic control flow graph (PCFG).

1The unary operator '+' means "one or more instances of."

45

• S is the subspace in M, allocated to G.

• Ex is the execution environment given by:

Ex,,o._,._o,. Simulates execution of G in a multiprogramming environment.

Ext_:t_,._o,. Executes G and simulates detection of errors in the text space of

G.

Ex = Ezte=t..dat,, Executes G and simulates detection of errors in the data space

of G.

Exp_.ol, ag,_t_ Executes G and simulates detection and propagation of errors.

• I is an injector which injects errors into M.

6.2.1 The Memory System

A paged virtual memory system is simulated and is defined as M = (V,.n, Pro), where, V,_ is the

virtual memory and Prn is the physical memory. A virtual memory system allows more than

one G to execute simultaneously and share pages. The functions that operate on M are:

• access_memory(PID, vbeg, v_,_d) - Maps the virtual block < vb_g, v_.,_d>

of a PCFG indicated by PID to a physical block (Pbeg,Pend _ in P,_. The

address of the first error encountered in the range <Pbeg,P,,,d > is returned.

If there are no errors, -1 is returned.

• inject_error(PID, v_) - The virtual address v_ is mapped to a physical

address, p_, in P,_. A bit is flipped and location p_ is marked as corrupted.

• inject_error(p_) - A bit in the word addressed by p_ is flipped and p_ is

marked as corrupted.

• erase_error(PID, v_) - The virtual address v_ is mapped to a physical

address, p_, in P,_. The word is corrected and p_ is marked as uncorrupted.

• erase_error(p_) - The word addressed by p_ is corrected and marked as

uncorrupted.

Function access_memory is used by Ex to detect errors in the memory accessed by a PCFG.

Functions inject_error and erase_error are used by the injector to introduce and correct

errors in the physical memory, P,_.

46

6.2.2 The Probabilistic Control Flow Graph

G is a probabilistic control flow graph, G = (N, E), where N is the set of nodes and E is the

set of edges.

Definition 3.1: The node set N = (nl,n2,...,n_} where ni is an abstract definition of a

program segment consisting of:

• Required:

name

text space

exec time

Pt

function

name or identification of the node.

location of node's text in virtual memory, denoted by <

txbeg, txe,_d >, the address of the first and last words.

number of cycles to execute the node.

probabiUty of detecting an error in the text space on the first

encounter.

function performed by the block (Read, Write, Read/Write,

IO, Err_correct, Err_detect, Checkpoint)

• Optional:

data space location of data blocks processed by the node denoted by (<

dtbeg 1, dt_.ndl >, • •., < dtb_.g_, dtendk >) where < dtb_.gi, dt_.ndi >

is the address of the first and last words of data block i. Data

can be located in shared memory space.

probability of detecting an error in data space.

probability of propagating an error in data space.

The optional parameters are needed only if the Ext_t_t_ or the Expropagate execution envi-

ronment is used.

Definition 3.2: The edge set E = {el,e2,...,ek} where ei is a directed edge defined as

ei = ((n_,nj),a_,rn_):

• (rLi, nj) iS an ordered pair of any two nodes in N with ni as the tail and nj as the head

of the directed edge,

47

• ai is the probability of traversing the edge,

• rni is a count of the number of times the edge is to be traversed.

Definition 3.3: A simple edge e_ is defined such that nj is not an ancestor of hi, nj _ ni,

cq > 0, and mi = O.

Definition 3.4: A loopback edge ei is defined such that nj is an ancestor of ni or nj = hi,

ai=0, and mi >0.

Definition 3.5: The set _ C_ E is the set of directed edges from node n v such that

i----I

6.2.3 The Memory Subspace

S is the subspace of the total text, data and shared space in virtual memory allocated to G

and is given by:

S = (< Sb(text), S,.(text) >, < Sb(data), S_.(data) >, < Sb(shared), S_(shared) >)

where,

* Sb(x) = address of the first word of space x in virtual memory.

• S,.(x) = address of the last word of space x in virtual memory.

6.2.4 The Execution Environment

A discrete-event simulator [60, 43, 24] is used to execute G in a simulated multiprogramming

environment. Ex can be one of the following paradigms.

6.2.4.1 Execution without error detection

Ex,_o_ro, models the probabilistic execution of G and is the basis upon which other execution

paradigms are built.

48

Input: cycle_time, IOserver_lD, CPUserver_lD

Function:

Assign PID to PCFG

Allocate text, data, and shared memory space in M

Traverse the PCFG

I -- top most node in PCFG

while (I <> terminal node)

texterror_addr = memory-access(PID, text space!)

if (data spacer specified)

da_aerror.addr = memory_access(PID, data space/)

SI: server_time = exec time/ x cycle_time

if (functionr = IO)

reserve (IO-server-ID)

hold(server_time)

release(lO-server-ID)

else

reserve (CPU_evver-lD)

hold (s erver-t ime)

tel eas • (CP U-server-I D)

$2: I = get_next-node()

end _hile

where,

reserve()

release()

simulate the queueing activity at a server.

hold() increments the system clock.

g et.next -node ()

if (_ : {et, e, }, where el is a loopback edge and

e, is a simple edge) then

if (mr > O) then

decrement mt

node_addr - head(el)

else

node_addr = head(e,)

49

else if(_7 = {el, e2, ..., ey}, and _7. contains no loopback edges) then

select ei E _; with probability c_i

node_addr = head(e_)

return(node_addr)

6.2.4.2 Execution with detection of text errors

Ezt_=t.._,.,.o,. is an extension of Ex,_o..r,.o,. which models the probabilistic detection of errors

present in the text space. It requires three additional inputs:

Additional input:

where,

de_ ect_func_ ion

record_error

detect_function, record_error, v

models the probabilistic detection process (see below).

records pertinent statistics, such as the time of detection.

Execution can halt or continue after detection as specified by

the user (default: continue).

parameter used by the detection function, 0 <_ v <_ 1.

Statements Sl and $2 of Ex,_o_,,.o,. are replaced with the following:

SI: error-detected = detect_function(

texterror_ddr, v)

if (error_detected)

tex_error.addr- txbe¢l
server_time = tXendt -- tXbeg t + 1

x exec timer × cycle_time

else

server_time = exec time[x cycle_time

$2: if(error_etected)

record_error()

use server for the remaining time

I = get_next.node()

5O

In S1above,the time to detection(server_time)is computedusinga linear relationshipbased

on thelocationof the errorwithin the text space.The detectionfunctionreturnsa FALSE if

the text_error_addr is -1. Otherwiseit modelserror detectionasfollows:

detect_unction:

increment err_pass

7 = U[O,I) -- a Uniform distribution

ifCpt'u (err_ass-1) < 7 AND err_ass < LIMIT)

return TRUE

else

return FALSE

where,

err_pass is the number of times the specific error is encountered.

LIMIT is the maximum number of encounters within which the error

must be detected.

The detection function decreases the probability of detection exponentially for u < 1, as the

The total probability of detecting an error. D. within Knumber of encounters increases.

encounters is:

where,

K

D= _-_D. (6.1)
_=1

?

) ptv"-i(l- D,_-I), _ > 1
D_

LPt, _¢= 1

The software model is designed to simulate and evaluate functional detection schemes. The

detection function presented here models the low level detection mechanism found in most

processors. Such mechanisms include mathematical exceptions (e.g. division by zero), bus

errors caused by invalid address or access types, and address error caused when an unaligned

word is fetched or stored. Later in this chapter, we show that the detection fimction accurately

captures the behavior of the low level error detection process for the programs modeled.

51

6.2.4.3 Execution with detection of text and data errors

Extext_data is an extension of Exee_,__rror. Identical service time calculations and detection

functions are used to simulate the detection of errors in the data space of a node. If the

function of the node is Write, then errors encountered in the data space are overwritten

with probability pd.

6.2.4.4 Execution with error propagation

Exp,.opag_,_e is an extension of Ezte_t..data which simulates the propagation of errors. If an error

is not detected, then with probability pp,.op, it is propagated based on the function of the node

at which the error has occurred.

An error in the text space is assumed to cause a Read node to read the wrong data and

a Write node to write data to the wrong location. A Read node with an error causes m (an

input parameter) errors to be injected into the data space. This models the phenomenon that

a wrong word was read and used for computation thus propagating the error. For a Write

node, 2m errors are injected. One error is injected because the wrong location is overwritten,

and another because the correct location is not updated 2.

An error in the data space of a node causes m errors to be injected into the data space if

the node's function is a Read. If the function of the node is Write, the error in the data space

is corrected.

[f a node's data space has more than one data block, the block injected is selected ran-

domly. The parameter m is typically 1. Since the data space of one node can overlap with

that of another, errors can propagate between nodes and within the memory space of a PCFG.

If a PCFG shares pages with other PCFGs, errors can propagate between them.

6.2.5 The Injector

The injector injects errors into the physical memory, P,_, using the functions described in

Section 3.2.1. The injector can be specified to inject one or many errors. If many errors are to

be injected, the user specifies one of the three error arrival distributions: constant, exponential

Propagation for a Read/Write node combines the effect modeled for Read and Write. To keep the paper

concise, a detailed description is not provided.

52

or Weibull. The rangeof locationsto be injectedmust alsobe specified.The wordsinjected

bind (pt 0.8; pd 0.5; sz i000; sz_half S00

memory{ data 0 1000; text 1001 leO0 }

sort ()

for i = 1 to 1000

for J = i to 1000

find sin entry -

end for

exchange lint [sin] with list [i]

end for

end sort

main() node main {

for i = i to I000 node init

lint[i] = 1000 - i node input

end for node mort

node print

input(k) flow{

if (k = ''sort _')

_call sort()

else }

call print() }

end main sort{
node fori

nods forj

node min

node endj

node xchn K

node endi

flow{

}
}
print{ . . . }

print()
for i = I to 1000

output(list[i])

end for

end print

a. Original program

WRITE 19 * sz pt 1001 1018 data pd 0 1000

READ i0 pt 1019 1029

init input

input sort B_t|CH O.S

input print BI_ICH 0.5

READ 4

READ 4

READ lO

_D 2

WRITE 12

READ 2

pt 1030 1034

pc 1035 1038

pt 1039 1048 data pd 0 1000

pt 1048 1050

pt 1051 1062 data pd 0 1000

pt 1063 1064

fori forj

forj min

min endj

endj min LOOP sz-half xchng

xchng forj LOOP sz endi

b. PCFG definition of program

Figure 6.2: Example program and corresponding PCFG.

are selected randomly from this range.

6.2.6 Specification Language

A simple program and the language used to specify a PCFG of the program are illustrated in

Figure 6.2. The "memory{}" construct specifies the virtual space required by the text, data and

shared segments. The "bind{}" construct binds constants to identifiers. The structure of the

program is defined with the "node{}" construct. A node can be a simple node containing items

listed in definition 3.1. It can also be a "meta" node consisting of one or more simple and meta

nodes and one "flow{}" construct that defines the control flow within that meta node. [n the

figure, node init's function is Write. Its exec time is 19 × 1000 cycles, its text space is

< 1001, 1018 > and it has one data block <0, 1000>.

53

The levelof abstractionusedwill dependon the natureof the experimentandthe informa-

tion availableabouttheprogram.As moreinformationis known,it canbeaddedby converting

simplenodesto metanodes.In thisexample,eachnoderepresentsasetof programstatements

3. Somenodesaremore"abstract" than others.Forinstance,nodein±t representsthe entire

"for loop" usedto initializethe array,whereastheloopsin sorl:() aremodeledin moredetail.

For this levelof abstraction,a node'stext space canbedeterminedbasedon the numberof

instructionsit represents.Fora RISCprocessor,wheretheinstructionsareof fixed length,the

sizecanbeestimatedbasedon the statementto instructionratio. The numberof cyclesper

nodeis 1 to 1.4timesthe numberof instructions.Oncethe PCFGis specified,it is compiled

to create a binary file that is executed by Ex.

6.3 Model Application

One application of the software model is illustrated. It is used to obtain error latency distribu-

tions of two different programs and evaluate two memory scrubbing schemes. The error latency

times obtained are validated with measured latencies from an actual system. The experiments

also validate the detection function introduced in the previous section.

6.3.1 Application Programs

Two programs are represented with the software model. The first is a Gaussian elimination

program with partial pivoting and back substitution. This program was chosen because it is

representative of a large class of numerical and statistical applications. The Gaussian elimina-

tion program (Gauss executes indefinitely. Each iteration takes 35.6 seconds and consists of

filling a 300-by-300 matrix with randomly generated numbers, solving the matrix and printing

the result. The program contains 280 lines of C code and was modeled with a PCFG consisting

of 23 nodes. The second program is an insertion sort (Sort). Unlike Gauss, it manipulates

integers and does not use the floating point co-processor. Sort repeatedly sorts a randomly

generated array of 7000 numbers which requires 30 seconds for each iteration. The program

contains 200 lines of code and is represented with a PCFG with [1 nodes. Both PCFGs are

_Typically, the level of abstraction is much higher than shown here, but this serves well as a simple illustration.

54

executedwith the Exte:_t_r,-or paradigm. Several instances of the Gauss PCFG are executed

simultaneously to demonstrate the software model's ability to execute more than one PCFG.

6.3.2 Experiment Setup

The software model was initialized with P,_ = 8MB of memory. One to 16 instances of a PCFG

are executed simultaneously. A procedure that sweeps through P,,_ every hour was added to

simulate the scrubber. Each experiment run consists of the following steps:

1. Start the PCFG(s).

2. Randomly select a PCFG and a word within the PCFG's virtual memory space to be

injected.

3. Inject an error - flip a bit of the selected word.

4. Execute the PCFG(s) until the error is detected or the observation period has expired.

5. Record the detection time and goto step 2.

The error is assumed to be caused by a transient fault and is repaired by rewritting the corrupted

word. There are two possible outcomes of an injection: 1) a PCFG detects the error, or 2) the

scrubber detects the error. Several terms used throughout this section are now defined.

Definition 5.1: An active error, e_, is an error that is detected by the program (i.e. detected

by the process of program execution) assuming there is no scrubber.

Definition 5.2: The program detection latency is the time from injection to the time the error

is detected by the program.

Definition 5.3: The scrubber detection latency is the time from injection to the time the error

is corrected by the scrubber.

6.3.3 Validation Environment

A Tandem Integrity $2, instrumented with a fault injection and a monitoring device, was used

to verify the detection times obtained from the software model. The original C version of the

application programs were executed while injecting errors into their text space and measuring

the detection times. Figure 6.3 shows the hybrid monitoring environment used to conduct the

55

experiments. A detailed description of the environment can be found in [75, 76].-The hybrid

environment takes advantage of the Integrity S2's ability to re-integrate a failed component of

a subsystem on-the-fly. The environment is automated and can execute for days repeatedly

injecting errors and collecting measurements. A Tektronix DAS 9200 digital logic analyzer is

used to monitor the bus activity on the CPU that is injected with errors. A finite state machine

is used to specify the data that is to be collected, such as the times when an injection occurs,

the corrupted location is read or written, an exception is raised, and when POST is initiated.

Tannin

cpu

D.¢,SProl_

soclwtc_nn_on

TektronixOAS
9200Logic
Analymr

Finitenmehine
toeontrddntn
collection

SUNSPARQI

HASControl
proccum

RS-232
connection

Figure 6.3: An injection environment using hybrid monitoring.

A DAS control program running on a Sun SparclI workstation accepts start, stop and data

upload commands from the injection program, translates them, and relays them to the DAS.

The injection program runs on the Tandem Integrity $2 machine and injects errors into the

text region (the region containing the machine instructions) of a target application. Injecting

an error consists of randomly selecting a word, and randomly corrupting one bit of the word

residing in the memory of CPUB. If the word resides in the cache, it is deleted to ensure that

the corrupted version of the word is used.

Figure 6.4 shows the program used to inject errors and collect data. Each error injected has

one of three possible outcomes:

1. The error is detected by the MIPS R3000 (e.g. bus error, address error, arithmetic

exception) on CPUB. In this case, CPUB sends an interrupt to the voter. The voter, not

receiving interrupts from the other CPUs, shuts down CPUB.

2. The error is detected by the voter. This can happen in two ways. First, all CPUs access

global memory, perform I/O or are forced to synchronize at the voter. At this point, the

56

1) Start one or more target application program(s).

2) Start the DAS controller and request it to start the DAS.

3) Randomly select

the target application to inject

the address of the word to be corrupted

the mask to use.

4} [nl'orm the DAS of the address of the word corrupted.

5) [nject the error into the word (flip a sigle bit).

6) Wait a specified time or until CPUB is shutdown.

meanwhile, the DAS records rea_Ls,writes,exceptions, POST etc.

7) If CPUB was not shut down
shut down CPUB.

8) Initiate the POST and re-integration process.

this cleans out any effect of the injection.

9) Request the DAS controller to upload the data collected by the DAS.

10) Goto step 3.

Figure 6.4: Program used to inject errors and obtain measurements.

voter detects a discrepancy in the command or the data submited by CPUB. Second. the

injection causes only CPUB to erroneously access global memory or perform I/O. The

voter detects the discrepancy and shuts down CPUB.

3. The error is not detected by either detection scheme and is eventually corrected by the

memory scrubber.

The behavior of the detection process and the measurements obtained should not be construed

to be purely characteristic of the Tandem Integrity $2 because it uses the error detection

mechanism of the MIPS R3000 - a commercially available RISC processor. However. because

of the additional detection circuitry of the Integrity $2, the error detection coverage will be

larger and the error latency times will be smaller.

6.3.4 Program Detection Latency

Experiments are initially conducted with the Gauss PCFG to determine if the high level

abstraction can provide program detection latency times similar to those observed by the real

program executing on the Integrity $2. Three different detection models, obtained by changing

the parameters of the detection function (see Equation 6.1), are used. The specific parameters

and the names of the detection models are listed in Table 6.1. Parameter p_ was selected so

57

Name p_ v LIMIT

SIM1 0.67 1.0 1

SIM2 0.425 1.0 2

EKP 0.589 1/3 2

Table 6.1: Parameters for the three low level error detection models.

that D (Equation 6.1) is 0.67 4, and it is assumed to be the same for all nodes in the PCFG.

SIM1 detects errors on the first encounter only. SIM2 detects errors on second encounters but

it uses the same value of Pt on each encounter because v is one. EXP reduces pt exponentially

with each encounter. There are two components to program detection latency: the access time

and the detection time. The access time is the time from injection to the time the corrupted

location is first accessed by the program. The detection time is the time from the first access

of the corrupted location to the time the error is detected. In the model, the time to traverse

the PCFG until the corrupted location is accessed is the access times. The detection model

is used to capture the detection time and the probability of detection. Since the access times

are orders of magnitude greater than the detection times, errors that are detected immediately

after being accessed are assumed to be detected in zero time. Detection models SIM2 and EXP

are designed to capture the cases where the detection times are large.

One thousand errors are injected into an executing PCFG to obtain program detection

latency times. Figure 6.5 shows the cumulative distribution functions (CDF) of the measured

and simulated program detection latency. The figure also contains the CDFs obtained from

using two distributions that estimate the spatial distribution of the memory accesses [47]. One

is the uniform distribution where all addresses are accessed with equal probability. The other

is a ramp distribution where the probability of accessing an address increases as the order of

the address increases. That is, high-order addresses are more likely to be accessed than low-

order addresses. The graph shows that the uniform and ramp functions, which do not model the

control flow of the program, fail to capture the spatial locality exhibited by the program. In the

measured CDF over half the detection times are less than a second whereas the 50th percentile

4 D = 0.67 was determined from measurements, however, later it is shown that D (which is a function of pt)

is not the dominant factor in determining latency times.

58

1.0

0.8

0.6

0.4

0.2

0.0

7f,ff'_'" .-_,/'" -- Measured

- ...'"// SIM1
/

. "/ EXP

.: /

: /

-/
SIM2

.................. Ramp

Uniform

I I I I I t

0 10 20 30 40 50 60

Detection time in seconds

Figure 6.5: Cumulative detection latency distribution functions.

for Ramp and Uniform is approximately 18 seconds. The three functions which model the

program's control flow captures the program detection latency distribution remarkably well.

Figure 6.6b is a histogram of the measured error latency times for Gauss. The spike

near the origin results because of the structure of the program and because most errors, when

encountered, are detected within milliseconds. Most of the time in Gauss is spent in loops where

a set of instructions are executed repeatedly. Errors injected in the body of a loop containing

the program counter (PC) will normally have small access times. These errors account for more

that 50% of all the errors. Errors injected outside a loop containing the PC will have access

times that are at least as large as the time needed for one iteration of the loop (Figure 6.7).

The actual access time will depend on the number of times the loop will be executed. These

errors account for much of the tail in Figure 6.6b.

A close scrutiny of the measured data shows that many errors are not detected immediately

after they are accessed. Figure 6.8 is a probability distribution function of the detection time

for Gauss. Though a large percent are detected within a few microseconds, a good segment

(10%) have detection times that are greater than 100 milliseconds. Furthermore, Figure 6.9

shows the frequency count of the number of multiple read accesses of the corrupted instructions

59

F
r

e

q
U

e

n

c

y

375 -- 125 -

300 --

225--

150 -

ean: 9.1 100 -
d. dev: 12.74 F
unt: I000 r

e 75-
q
U
e
n 50-
C

Y

25-

Mean: 8.8
Std. dev: 12.55
Count: 256

75-

O [[[[] I" 0 h_ll.dn_,l_.n. _I I "" g,

0 10 20 30 40 50 60 0 10 20 30 40 50 60

a) Simulated (EXP) b) Measured

Figure 6.6: Histogram of the program detection latency in seconds, for 1 program.

:_ location of
error

Location
of the
program
counter

o

o

o

o

o

o

Errors inside the loop
will have small access
times.

Errors outside the
loop will have larger
access times. Size
will depend on number
of loop iterations
remaining.

Figure 6.7: Access time depends on location of the PC and the error.

6O

F
r
e

q
u

e
n

C

Y

350

300

25O

200

150

lO0

5O

0 - __
{

0.0 0.5

--{ { P

1.0 1.5 2.0

Time (sec.)

Figure 6.8: Histogram of the measured detection times for Gauss.

prior to detection. The cause for this behavior is probably due to data dependencies. ['or

instance, if the instruction bgt r$, 0x4000 is corrupted and becomes bgt rT, 0x4000. the

error may not be detected if the contents of register r7 is greater than zero. On a later access,

the value of r7 may be less than zero, thus potentially causing an error. The other reason is that

the error propagates and is eventually detected while executing some other instruction. The

software model does not directly model this later phenomenon. However, it models the multiple

read phenomenon with error detection models which detect errors on a second, third or more

access. The time to re-access the corrupted location is determined by traversing the PCFG and

is the detection time. Note that the probability of detection tends to reduce exponentially with

increasing number of read accesses (Figure 6.9). Of the detection models, only EXP mimics this

behavior. SIM1 detects errors only on the first access. SIM2 overestimates the number of errors

detected because it does not reduce the probability of detection with increasing accesses. The

value of v = 0.33 for EXP was obtained experimentally. Repeated trials with various values

were tried and a value of 0.33 was found to produce the most accurate representation of the

measured behavior. Comparison of Figure 6.6a and 6.6b, shows that EXP captures the error

latency distribution very well. It even captures the tail of the latency distribution. Results

of a statistical verification of the detection models are shown in Table 6.2. The table lists the

mean and standard deviation of the error latency distribution and the sum of the square of the

61

F
r
e

q
U
e
n
c

Y

20-

15

10

5

l

I
I
i

I

I

[I
0 2 4 6 8 I0 12 14

Number of Multiple Reads

Figure 6.9: Histogram of multiple reads of corrupted locations.

residuals, R,

R =
i

where, y_ is the ith entry from the measured CDF

_ is the ith entry from the simulated CDF

for all detection models and for the Ramp and Uniform methods.

produces R values that are 3 to 350 times smaller.

Of all the models, EXP

Name Mean Std. R Normalized R

w.r.t. EXP

SIM1 6.9 10.2 0.066 3.00

SIM2 11.7 17.36 0.345 15.68

EXP 9.1 12.74 0.022 1.0

MEASURED 8.8 12.55

Uniform 37.64 34.68 7.58 344.55

Ramp 37.13 39.73 5.68 258.18

Table 6.2: Statistics of the measured and simulated program detection latency for the Gaussian

elimination program.

62

F
r

e

q
U

e

n

£

y

1100 -

880 -

660

44O

220

Mean: 17.37
td. dev: 26.40
ount: 1987

L - n

i i i (-i L i I I I
0102030405060708090100

250 --

200- Mean: 16,48
- Std. dev: 24.51
- Count: 476

150 -

i00 --

50--

0 l l l l l l _ l I i

0 10 20 30 40 50 60 70 80 90100

a) Simulated (EXP) b) Measured

Figure 6.10: Histogram of the program detection latency of two programs (sec.).

The software model was used to execute two PCFGs to obtain their combined detection

latency times. Figure 6.10 contains the measured and simulated latency times of two copies

of the Gaussian elimination program executing simultaneously. The two means are similar

and demonstrates that the model can predict the change in latency times due to the increased

contention at the CPU.

6.3.4.1 Applicability of the Model

The previous subsection demonstrates that the software model can be used to determine the

program detection latency time for the Gaussian elimination program. The question is can this

same model be applied to different programs? One issue is the parameter Pt. It varies with the

system and is very dependent on the structure of the program. For example, programs with

many branches that are seldom traversed will tend to have a smaller value for Pt. Though the

PCFG of a program can be used to estimate pt, it is useful to determine the sensitivity of the

results of the model with respect to pt. If the model is highly sensitive to the estimated pt, it

will not be generally useful. Another issue is the detection model. It is not clear that the same

detection model will hold for all program types.

To determine the sensitivity of the results to Pc, the Gaussian elimination PCFG was ex-

ecuted with various values of Pt. Table 6.3 contains the mean and standard deviation of the

program's detection latency and the R-values for varying values of pc- The EXP detection

63

Pt Mean Std. Dev. R
0.2 12.42 21.7 0.071

0.4 11.40 19.6 0.047

0.6 10.02 16.79 0.021

0.8 8.83 14.14 0.014

1.0 7.41 10.4 0.018

Table 6.3: Sensitivity of the mean detection latency time to varying values of pt (LIMIT = 5).

Name Pt v LIMIT

SIMI 0.60 1.0 1

SIM2 0.26 1.0 3

EXP 0.42 1/3 3

Table 6.4: Parameters for the low level error detection models.

model with LIMIT set to 5 was used. Very large values for LIMIT tend to skew the mean and

produce the worst case results. The table shows that the relationship between Pc and the mean

latency is linear. The R-value also displays an inverse linear relationship and indicates that

the distribution generated by the model fits the measured distribution well. For all values of pt

except 0.2, the R-value is less than that produced with SIM1 and SIM2 (Table 6.2).

To determine whether the detection model developed for Gauss can be applied to other

programs, it is used to model an insertion sort program. The sort program was selected because

it operates on integers, does not use the floating point co-processor, and hence is quite different

from Gauss. An arbitrary value of D = 0.6 is used for all the nodes in the sort's PCFG.

For comparison purposes, detection models SIM1 and SIM2 are also used. The parameters

for all three detection models are listed in Table 6.4. Table 6.5 lists the mean and standard

deviation of the error latency distribution and the R values for each detection model, and

Figure 6.11 contains the measured and simulated cumulative distribution functions. Again,

EXP produced relatively more accurate results both with respect to the mean and the overall

latency distribution. But more importantly, the Table and the Figure indicate that the model

can be generally applied to other programs. Figure 6.12, which shows the measured frequency

of multiple reads before detection, explains why EXP works well with sort. Sort displays a

behavior similar to that seen with Gauss. Based on only two programs, one cannot state as

64

Name Mean Std. R Normalized R

w.r.t. EXP

SIMI 9.6 11.72 0.073 1.20

SIM2 II.I 17.12 0.128 2.13

EXP 10.42 14.05 0.061 1.0

MEASURED 10.67 11.93

Table {i.5: Statistics of the measured and simulated program detection latency for Sort.

1.0 m

0.8

0.6

0.4

0.2-

0.0

0

":'L'" ''

_ "- Measured

SIM1

- - EXP

---- SIM2

I I I I I I I I
10 20 30 40 50 60 70 80

Time (sec.)

Figure 6.11: Measured and simulated cumulative detection latency distribution functions.

fact that all programs will display such behavior thus making the EXP detection model widely

applicable. However, given that the two programs are very different in structure and in the

types of data they process, one can conjecture that for R,ISC machines, similar behavior will be

seen across a large number of programs. We say this because with RISC's limited instruction

set, the instruction mix for different programs are remarkably similar. In [76], the author lists

the frequency of occurrence of each instruction of the Gaussian elimination program and a

program that finds anagrams in a large string of characters. The instruction mix for these very

different programs are quite similar.

The next subsection will use the Gaussian elimination PCFG to analyze two scrubbing

mechanisms.

65

F
r
e

q
U

e
n

c

Y

10-

8-

6-

4-

2-

0

0 I0 12 14

I
l-

l I I

2 4 6 8

Number of Multiple Reads

Figure 6.12: Frequency of multiple accesses of corrupted location (Measured).

6.3.5 Coverage of the Memory Scrubber

This section defines and computes the active coverage of the scrubber. The scrubber coverage,

SC, is:

SC = Pr[ea]Pr[St < Pt] + (1 - Pr[ea])

The scrubber's active coverage is Pr[Sl < Pt], and is the probability that the scrubber will

detect an active error before the program. St is a random variable denoting the detection

latency of the scrubber. Pt is a random variable denoting the detection latency of the program.

Emphasis is placed on the active coverage because active errors not caught by the scrubber

cause a processor board to be shutdown followed by a lengthy POST and re-integration period.

This time is a "window of vulnerability" within which a second error (whether active or not)

will cause the entire system to fail. Increasing the active coverage of the scrubber will reduce

the probability of processor board failures and increase the reliability and availability of the

system.

The latency distribution of the scrubber, fs_(s), can be shown to be uniformly distributed.

fst (.s) = I/T, 0 < s < T, where T is the time required to complete one sweep through the mem-

ory. If fp_(p) is the distribution of the program's detection latency, then the joint distribution

66

No. Programs

1

2

4

8

16

Pr[& < Pt]

Simulation E[Pt]/T

0.0025

0.005

0.009

0.016

0.032

0.00246

O.OO48

0.0087

0.0165

0.0325

Table 6.6: The active coverage of the scrubber.

of the two detection latencies is fsp(s, p) = fPt(P)/T, by stochastic independence and:

//// ////Pr[& < P_] = /sp(s,p) dadp + fsp(s,p) dsdp
----0 ----0 ----T =0

1/T/r p.fp,(p) dp+ (1-rp,(T)) (6.2)
,Ip= 0

For T much larger than the mean program detection latency time, the approximate active

coverage is:

Pr[& < Pl] "_ E[P_]/T (6.3)

One hundred thousand errors were injected to determine the active coverage of the scrubber

for T = 3600 seconds. Table 6.6 contains the results obtained with simulation and with Equation

6.3. Equation 6.3 provides accurate active coverage values for large T. Hypothesis testing was

used to show that the means in column 2 and 3 are statistically identical. By the Central

Limit Theorem, a normal distribution was assumed. Table 6.6 shows that the active coverage

is extremely small. It improves with increasing number of programs because the combined

program detection latency times increase.

The coverage of the scrubber can be improved by using two scrubbers: one to scrub only

unused memory while another scrubs the allocated pages in memory. This heuristic can be

implemented easily because the memory system keeps track of allocated and unallocated pages.

The overhead of the original scrubbing scheme is:

OVHDotd = Nk/T

where, N is the number of 32-byte blocks in the memory and k is the overhead for scrubbing

one block. The overhead per hour, for T = 3600 seconds is approximately 1.5 seconds. The

67

Active Coverage of New Scrubber

OVHD,_,_,/OVHDold 16 Prog.

1

2

4

8

16

1 Prog. 4 Prog.
0.33 0.32

0.41 0.40

0.45 0.43

0.51 0.45

0.61 0.49

0.31

0.38

0.41

0.44

0.46

Table 6.7: Active coverage of the new scrubber.

overhead of the new scrubbing scheme is:

OVHD,,,,_ = k(N,_/T_, + N,./T=) (6.4)

where, N_ is the number of unaUocated 32-byte blocks, N_ is the number of allocated blocks,

and N = N_, + Na. T_, and Ta are the scrubber sweep times for the unaUocated and allocated

pages, respectively. Table 6.7 contains the active coverage of the new scrubber for various

overheads, with T_ = 4T. T_ is determined from Equation 6.4 for a specified overhead. The

executable image of one Gaussian elimination program is 32KB (N_ = 1K blocks). The new

scrubber improves the active coverage by one or two orders of magnitude without increasing

the overhead. However, since T,_ is four times slower than T, the impact of the two scrubbers

on system dependability should be evaluated before one is selected.

Since the dominant factor of the new scrubber is To, Equation 6.2 can provide an approx-

imate active coverage if fp_(p) is known. A statistical package was used to fit the measured

program detection latency shown in Figure 6.6b with a 2-phase hyperexponential distribution,

HYPER(al,A1,a2,)_2). The fitted curve is HYPER(0.5, 0.045, 0.5, 5.435) with an r 2 value of

0.99. Using the 2-phase hyperexponential and substituting T_ for T in equation 6.2, the active

coverage is:
1 e-)uT'_ 1 e -)_2T

Pr[St < Pt] = a,(_:A, TA,) + a2(_2 TA2) (6.5)

Table 6.8 contains the Ta values and the coverage estimated with the above equation. The

results match those shown in columnn 2 of Table 6.7 well and verify Equation 6.5.

To show the impact of using simple estimations of application behavior, we compute the

active coverage using the ramp function. We also compute the active coverage assuming fp_(p)

is exponentially distributed with a mean of 8.8 seconds (the measured mean for 1 program).

68

OVHD_,_ / To (sec.) Estimated Active

0 VH Dora Coverage

1

2

4

8

16

19.62

8.41

3.93

1.90

0.935

0.34

0.43

0.48

0.53

0.59

Table 6.8: The estimated active coverage of the new scrubber for one program using a fitted

fp,(P).

Active Coverage of New Scrubber for 1 Program

O V H Dne_ / Ramp Exponential

OVHDotd Cvrg. % Error Cvrg. % Error

1 0.70 112.1 0.41 24.2

2 0.85 107.3 0.65 58.5

4 0.93 106.6 0.81 80.0

8 0.97 90.2 0.90 76.5

16 0.99 62.3 0.95 55.7

Table 6.9: Active coverage of the new scrubber using ramp and an exponential detection

latency distribution.

Table 6.9 contains the coverages obtained. The error column compares the difference in coverage

with those obtained using the software model (column 2 of table 6.7). The error is due to an

overestimation of the number of large detection latency times. Figure 6.5 shows that over

half of the measured detection times are less than a second, whereas the 50th percentile for

ramp is approximately 18 seconds. The coverages are very misleading. Furthermore, they

can produce extremely optimistic dependability figures causing the designers to falsely assume

that dependability specifications are being met. These results emphasize the importance of

application dependent evaluation - especially when studying application specific systems.

6.4 Summary

In this chapter, we introduced a software model that provides a framework to evaluate the

behavior and effect of software on hardware faults. The model represents application programs

by decomposing them into graph models consisting of a set of nodes, a set of edges that prob-

69

abilistically determinethe flow from nodeto node,and a mappingof the nodesto memory.

Thesoftwaremodelsimulatestheexecutionof theprogramswhileerrorsareinjectedinto their

memoryspace.The result providesapplicationdependentparameterssuchas detectionand

propagationtimes. The modelis especiallyusefulin the earlydesignstagesbecauseit allows

designersto makeapplicationdependentevaluationof functionandsystemlevelerrordetection

andrecoveryschemes.Oneuseof themodelwasillustratedwith a casestudy. The modelwas

usedto obtain error detectionlatencytimesof the Gauss and sort programs running on a

Tandem Integrity $2 system and evaluate the coverage of two memory scrubbing schemes. The

applicability of the model for different programs was evaluated by studying its sensitivity to the

detection parameter pt. The EXP detection model was shown to be applicable to both Gauss

and Sort which use different instruction sets. We feel that this model is generally applicable

to most compute bound programs running on RISC processors. Error detection latency times

obtained with the model were validated with measurements from an actual Integrity $2 system.

Formulae which were derived to estimate application dependent active coverage values of the

scrubbing schemes were verified with the software model. The application dependent coverage

values obtained with the model were compared with those obtained via traditional schemes

that assume uniform or ramp memory access patterns. For our program, some coverage values

obtained using the traditional approach were found to be 100% larger than those obtained with

the software model. This result emphasizes the need for application dependent evaluation -

especially when evaluating the dependability of application specific systems.

7O

Chapter 7

Simulation Acceleration

The previous chapter evaluates the impact of application software running on a single processor.

The question is how can the study be extended to perform application specific dependability

analysis of the entire system? A naive approach that models the execution of each PCFG over

a simulated period of several years would require astronomically large execution times. Clearly,

acceleration techniques are necessary to speedup the simulation. This is especially the case for

functional simulation tools such as DEPEND because one of its advantages is the ability to

simulate system functionality with detailed algorithms. How you evaluate detailed simulations

of systems for extended periods of time is the focus of this chapter.

This chapter presents acceleration techniques used to reduce simulation execution time while

still allowing detailed analysis of a system. A combination of hierarchical, time acceleration,

and hybrid simulation is used. The overall approach is discussed and then illustrated in stages.

The results of each stage are then validated, either with measurements from the Integrity $2 or

with simulations that do not use the acceleration technique. The automated environment that

allows the user to employ this acceleration facility is described in Appendix A.

7.1 Acceleration Approach

The acceleration technique uses a combination of three schemes to provide simulation speedup.

It uses hierarchical simulation, a time acceleration algorithm, and hybrid simulation. Because

the terms hierarchical simulation and hybrid simulation have been widely used to mean different

things, we now define how the terms are used in this thesis. By hierarchical simulation, we mean

71

that the samesimulationapproachis usedto modelasystemat differentlevelsof abstraction.

Resultsfrom a detailedmodelareusedby a moreabstractmodelthustieingthe two together.

With hybrid simulation the level of abstraction remains the same but a combination of two or

more techniques are used to solve the simulation model. In DEPEND, a functional simulation is

either combined with a Monte Carlo simulation [40, 28] or with a Markov or Semi-Markov model

[70]. Existing Markov analysis tools are used to solve the Markov model. While many define

Monte Carlo simulation to be any kind of simulation that uses random numbers, we differentiate

between functional simulation and Monte Carlo simulation. In the latter approach, the passage

of time does not play a substantive role [40].

The general framework of the acceleration technique is illustrated in Figure 7.1. Portions

of the system are first analyzed with detailed functional simulation models. Key characteristics

of the models are extracted and stored as statistical models. A statistical model can be a point

statistic such as a mean or a median, an entire distribution such as the program detection

latency distribution, or it can be a table. A fault dictionary is an example of a table. A

fault dictionary may consist of a list of possible gate-level faults and for each fault contain all

possible failure modes and their probabilities. The statistical models are used by more abstract

functional simulation models to represent the behavior of the detailed model. As Figure 7.1

shows, the hierarchical approach can be used repeatedly to ascend to higher levels of abstraction.

Simulation speedup is achieved because the events in the detailed model are not simulated but

are replaced with its statistical model. This allows the abstract model to simulate more of the

system while maintaining reasonable execution times.

The time acceleration technique is intimately entwined with the hierarchical simulation

approach. It is based on the notion that a statistical model provides information about a fllture

event. For instance, if the statistical model is a program detection latency distribution, then

the time at which an error will be detected, t + x, can be determined by sampling from the

distribution at time, t, when the error is injected. Using this information, the time acceleration

technique can leap to a point just before time t+x and begin to simulate the detailed behavior of

a system. Once the error is detected and its effect has subsided, the time acceleration mechanism

can leap forward to the next error detection (Figure 7.2). This approach can significantly

speedup simulation time, especially if the events representing the detailed behavior occur in

nanoseconds while error latency times are in seconds.

72

/

J Hybrid Simulation =

Subrnodels

Figure 7.1: The framework of the acceleration technique.

The foundation of the hybrid simulation approach is based on the notion of variable aggrega-

tion and decomposability [13]. With this technique, a large complex model is broken down into

simpler submodels. The submodels are analyzed individually and their results are combined to

derive the solution of the entire system. So long as the interactions among the subsystems are

weak, this approach provides valid results. Figure 7.3 illustrates how this approach is readily

adapted for dependability evaluation. A model of a system is broken down into two submodels:

the failure occurrence submodel and the repair submodel. Each submodel is modeled with a

functional simulation - which can itself use hierarchical simulation and time acceleration. The

submodel is executed to extract statistical models (e.g. a failure distribution) that represent

its behavior. The statistical models are then used to drive a Continuous Time Markov Chain

(CTMC) or a simple Monte Carlo simulation of the failure and repair process of the entire

system. The approach is not limited to any number or type of submodels. As Figure 7.1 shows,

73

latency period
X

I
I Error n
f

jump Error n+l
f

t '
I I

(',-< ,,_<
Inject Simulate in Simulate in
error nanoseconds nanoseconds

time

Figure 7.2: Time acceleration: "Error" driven simulation.

all three approaches can be combined to cater to the specific needs of the user. The automation

of the acceleration technique is discussed in Appendix A.

There has been extensive investigation into importance sampling to reduce simulation time

[41, 50, 62, 72]. Importance sampling is a statistical approach that increases the probability of

failure occurrences to reduce the time required for the simulation to converge. The results pro-

duced by the simulation are then "unskewed" by multiplying by a factor that takes into account

the increased failure probability. These heuristics are easiest to apply to Monte Carlo simu-

lations as opposed to functional simulations, and their estimation of stationary measures (e.g.

MTTF and availability) are mostly restricted to regenerative models. Hybrid techniques have

been used in the past. Schwetman [59] applies this technique to analyze a multiprogramming

computing center. A simulation models the arrival and activation of jobs and calculates the

percentage of time spent at each multiprogramming level. A central-server queueing network is

used to model the processing subsystem for each of the mulitprogramming levels. The hybrid

model is 18 to 200 times faster than a pure simulation model because it does not simulate the

system processor in which events occur in the order of milliseconds. In other words, speed

up is achieved by replacing the time consuming "segment of the model with an approximate

analytical model. The most prominent example of the use of hybrid techniques in reliability

analysis is the HARP tool [4]. HARP decomposes a model into a fault occurrence/repair model

(FORM) and one or more fault/error-handling models (FEHM). The FEHMs are simulated

with an extended stochastic Petri Net (ESPN) to obtain instantaneous coverage probabilities.

74

system

_ Failure

occurrence

submodel

Repair
submodel

Func_onal Sta_stical
simulation model

Figure 7.3: Hybrid simulation for dependability evaluation.

These probabilities are then automatically incorporated into the FORM model, represented by

a CTMC, and solved to obtain system reliability measures.

Our acceleration technique differs from the others in that it does not rely solely on analytical

models to achieve speedup. Schwetman replaces the time consuming portion of the simulation

with an analytical approximation. HARP imposes a Markov or semi-Markov fault occurrence

process which can only use instantaneous coverage probabilities. These techniques are not

widely applicable. Our acceleration technique is more widely applicable and concurs with

the design philosophy of DEPEND. The acceleration approach can be used with functional

simulation. It is not limited to statistical models consisting of single point statistics but is

designed to collect distributions and tables. Later in the chapter, we show that this can be

crucial to the results obtained. Since the approach breaks down an entire functional simulation

model into smaller submodels, importance sampling techniques that may be impossible to apply

to the entire model may be readily applied to the submodels. Finally, this is the first automated,

general-purpose acceleration technique provided with a simulation tool.

In the rest of the chapter, the details of the acceleration approach is illustrated in stages.

The results at each stage are verified with measurements.

75

7.2 Stage 1: Hierarchical Simulation and Time Acceleration

To perform appfication specific analysis of the Tandem Integrity $2 system, the software simu-

lation model described in chapter 6 and the hardware simulation model described in chapter 5

are combined using hierarchical simulation and time acceleration. The software model is used

to provide the application specific error latency distribution. The hardware model provides an

error occurrence model that takes advantage of the empirical distribution to speedup simula-

tion. Together, the approach is used to study the effectiveness of the scrubbing scheme and the

availability and MTBF of the Tandem Integrity S2 system running a specific application.

The complete error occurrence process modeled by the hardware simulation, for just two

CPUs, is illustrated in Figure 7.4. A similar process is used to inject errors into the global

memory. As shown in the figure, the error arrival times are exponentially distributed with a

mean of ,_ hours. The error occurrence process can model correlated errors that affect more

than one component, active errors that are detected within 2047 cycles and latent errors that

remain undetected in the system for periods exceeding 2047 cycles. For each error injected,

probabilistic branches are used to determine whether it is a correlated (affecting more than 1

component) or a single error, and whether it is active or latent. The probabifities are specified at

run time. The hardware simulation model uses the approach described in chapter 4 to represent

latent errors. It uses a chronologically sorted queue to maintain the latent errors injected into

the system. Among the information associated with each latent error include the time at which

the error is injected, its location (the component and memory address), and its latency period.

Typically, the errors are detected when their latency period expires. However, the errors can also

be corrected by the scrubber or detected during a repair. Different scrubbing algorithms, the

location in which the errors are injected, and component failure frequency changes the activation

times of a latent error. Storing the latent errors in a queue allows dynamic determination of

whether a latent error is detected or corrected and the time of detection or correction.

The latency period of each error is determined from an empirical program detection la-

tency distribution. This distribution is obtained from the software model. The steps in the

hierarchical simulation approach are as follows:

• Execute software model with one or more PCFGs.

76

I ,

_oa

e_ _ ExpononCial
error arrival

Eat •

_o _ q probabilisti=ally soloct

e_ _ ono or both =omponontI

=o_-- _ latont orror

__ - _ I,,_m,t on_ poriod

%__ _ • _ _ dmtorminod fr_

LIPv',, I I g_;,,, I I I I/t,. / aoco_:Lon 1,.c.,n_-y
• --_/ I I I _V" " "--_/ dlmCribuCion obtainod

L I J
L__ --J _ I ercors I / _ _ --7 r--_in dormant

Iortmd q[uouo

Scrubbor =orro_ I

all latont orrorIr

Wait

0 - 2047

• In addltlon, all a_ivm orrorI and

latont errors aro =oEEoctod during

=on_onont Eo-intogration. T_EII alIo

afro.s _ho a=tual per =_mponont

failu_o ratOo

I Walt I

0 - 2047

Cy¢lOI

A=_ual per component

/ failuro rato

C_mponont

CEllh

Figure 7.4: The error occurrence process for 2 CPUs.

• Store the program detection latency distribution. This is the statistical model that repre-

sents the error detection process of the programs.

• Execute the hardware simulation model with the error occurrence process described above.

Sample from the empirical program detection latency distribution to determine the latency

per/od of each error.

Speedup is achieved because the time consuming low level simulation of the detection process of

each error is replaced with a distribution. Further speedup is achieved using time acceleration.

Time acceleration takes advantage of the fact that the detection time of each latent error is

known apriori. The time acceleration algorithm works as follows:

77

1. Poll the processors and global memory to determine time of earliest event among them.

There are three possible events:

* An error's latency period expires.

• Scrubber correctsan error.

• Re-integrationbegins.

2. Leap forward in time to earliestevent.

3. Simulate system activityat nanosecond granularityuntilevent occurs.

4. Goto i.

The DEPEND objectsused tosimulatethe processorand globalmemory containmethods that

provide the time and type of the earliestevent to facilitatethe time accelerationalgorithm.

7.2.1 Validation of the First Stage

To validatethe combined functionalsimulationmodel developed using hierarchicalsimulation

and time acceleration,the resultsfrom the simulationare compared with those from a fault

injectionexperiment on the Integrity$2. The hybrid monitoring environment described in

chapter6 isused to conduct the faultinjectionexperiments.Two Gauss programs are used as

the targetapplications.Figure7.5shows the injectionprogram thatwas executed to obtainthe

measured mean time between failures(MTBF) forthe Integrity$2. The injectionexperiment

was conducted for 28 hours during which 414 errorswere injected.The mean time between

failure(MTBF) and the number of undetected,latenterrorspresentin CPUB just priorto

shutdown i was collected.The experiment was then repeated with the functionalsimulation

model just described.The simulationinjectionscenarioisidenticalto that outlinedin Figure

7.5.As in the hybrid monitoring system,the simulationmodel injectederrorsonly intoCPUB.

The model was executed fora simulatedtime period of 500,000 seconds (5.78 days) with an

exponentialerrorarrivalrate with a mean of 3 minutes. Figure 7.6 shows the measured and

simulated CPU shutdown distributions and their means, medians, standard deviations and

the sample counts. The means, medians and the standard deviations are statistically identical.

1This is simply a count of the number of errors injected prior to a CPU shutdown. So if four errors are

injected before a shutdown, it is assumed that there are three undetected errors in the CPU prior to a shutdown.

78

1) Start the two Gaussian elimination workload programs.

2) Start the DAS controller and request it to start the DAS.

3) Randomly select

the program to inject

the address of the word to be corrupted

the mask to use.

4) Inform the DAS of the address of the word corrupted.

5) Inject the error into the word (flip a single bit).

6) Determine time of next error, t (e:cp()_ = 3minutes)).

7) Wait for CPU shutdown or until t - whichever comes first.

8) If (CPU is shutdown before t elapses)

re-integrate the CPU

sleep until t elapses

9) Goto step "3.

Figure 7.5: Injection program used to measure the MTBF.

Comparing the distributions, the general shape of both distributions is similar in spite of the fact

that the measured distribution has 5 times fewer samples. A closer look at the two distributions

reveal that many of the peaks in the measured distribution can also be found in the distribution

obtained from simulation. For example, the simulated distribution captures the peaks which

occur between 640 and 960 seconds and between 960 and 1280 seconds. Figure 7.7 contains the

measured and simulated distributions of the number of undetected, latent errors in the CPU at

the time of a shutdown. The distribution obtained from the simulation model tracks the one

obtained from measurement very well. We feel this close correspondence between the measured

and simulated results validates the high fidelity of the simulation model using hierarchical and

time acceleration techniques.

7.3 Stage 2: Hybrid Simulation

This section describes the hybrid approach that combines analytical and simulation techniques

to reduce the execution time of the functional simulation model described in the previous

section. In spite of the use of hierarchical simulation and time acceleration, the simulation

execution time can be in the order of days. Certain parameter settings (e.g. frequent scrub-

bing coupled with large detection latency times) erases most errors injected thus requiring the

simulation of a very large number of errors for each system failure. To make matters worse, the

79

F
r

e

q
U
e

n

c

Y

2O

16

12--

8--

4--

0

0

Mean: 381.84
Median: 291.0
Std. dev: 294.55
Count: 247

320 640

_fg hlf g Bft

i i
960 1280 1600

7O

6O

F 50
r
e

q 4O
U

e 30
n

£

y 20

10

Mean: 383.29
Median: 301.94
Std. dev: 280.18

Count: 1304

0 320 640 960 1280 1600

a) Measured (sec.) b) Simulated (sec.)

Figure 7.8: The Time to CPU shutdown distribution (in seconds).

system must be run for extended periods of time to collect enough system failure events to ob-

tain statistically valid results. If the MTBF of a system is 10 years, it may need to be simulated

for 300 to 500 years to obtain valid results. Features of the model such as the deterministic

scrubbing scheme, modeling the location of each error and the inter-dependence between the

system components (see chapter 4), and the non-exponential error latency distributions make

this model very difficult, if not impossible, to model accurately with analytical methods. Impor-

tance sampling techniques cannot be used because they cannot accurately calculate the steady

state MTBF (Mean Time Between Failures) for non-regenerative processes [50].

The hybrid approach breaks up the simulation model into the failure occurrence and repair

submodels. To simplify the example, we will forego developing the repair submodel by assuming

that repair coverage is 100% and repair times have an exponential distribution. The failure

submodel is the error occurrence portion of the functional simulation model described in the

previous section (see Figure 7.4). The functional simulation model is executed for a short time

to collect component inter-failure times - the time period between successive failures. This is

feasible because the component failure rate is significantly faster than the system failure rate,

and so a large number of samples can be collected in a short period of time. The measured

failure distributions and the repair distributions are then used with CTMC and Monte Carlo

simulations which model the failure/repair process of the entire system. The detailed steps of

the approach are illustrated in Figure 7.8.

80

F
r

e

q
U

e

n
C

y

150 -

I25 -

I00 -

75-

50--

25--

0

Mean: 0.67
Std. dev: 0.97

Count: 247

750 --

625 --

F
r 500 --
e

q
u 375 --
e

n

c 250 --
y

125 -

0

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

a) Measured b) Simulated

Mean: 0.73

Std. dev: 1.06

Count: 1304

Figure 7.7: Distribution of the number of latent errors prior to a CPU shutdown.

7.3.1 Markov modeling

In order to use a CTMC, the measured failure distributions are first fitted with an exponential

polynomial. A statistical analysis package, SAS [57], is used for curve fitting. The chi-square

and Kolmogorov-Smirnov tests [70] are used to verify the goodness of the fit at the 0.01 signif-

icance level. The CTMC models used for the failure/repair process will depend on the fitted

polynomials. If they are simple exponentials, the result is the CTMC model shown in Figure

7.9.

In the model, OcOg is the initial state where zero processors and zero global memory boards

have failed. In state iclg, 1 processor and 1 global memory board has failed etc. State F is

the absorbing system failure state. The rates A× and A.r are the empirical failure rates for the

processors and the global memory, respectively. Exponential repair times with means (I/_L x

and 1/#.y) equal to the constant repair times of the system are used in the model. This CTMC

can be solved with any existing analytical tool to obtain the system MTBF. The models in this

paper are solved using SHARPE [54].

7.3.2 Monte Carlo simulation

With Monte Carlo simulation [28], the empirical failure distributions can be used directly

without any fitting. Monte Carlo simulation is useful when the empirical distributions cannot

Ixecute

event-driven
simlation

Extractfailure I

arrivaldistributions

forC_ andmo_ I

C'E nodeloffailurelrepaizL

p_oceu F

SystemMTBF"

I

Fit empirical distributions usinJ

non-lineu regressionand test [

goodnessof fit [

MonteCarlosimulation model

of the failure/repai: process

Figure 7.8: The hybrid approach.

Statistical

modelof
thefailure

0¢¢_"tence

process

be fitted to an analytical distribution, when the state space of the CTMC model is too large

to be solved with current numerical methods and when the distributions are not exponential.

Monte Carlo simulation was used to simulate the Markov model in Figure 7.9. The failure

times of the components are sampled from the empirical failure distributions using an inverse-

transform method [40]. The constant repair times used in the functional simulation are used

with the Monte Carlo simulation also. To further reduce the execution times of the Monte Carlo

simulations, a variance reduction technique called antithetic variates was employed [28, 40].

The success of the hybrid approach for this application depends on, l) the degree of in-

teraction between the failure process and the repair process, and 2) on whether the failure

distributions adequately represent the failure process. The repair process has minimal im-

pact on the failure process. Therefore, the primary issue is whether the distributions collected

adequately represent the actual failure process.

82

Figure 7.9: Markov model of system with exponential failure & repair distributions.

7.3.3 Validation of the Hybrid Approach

Three experiments are conducted using the hybrid approaches to verify their efficiency and

validate their accuracy. The results obtained using the hybrid techniques are compared with

results obtained from executing the functional simulation model described in the previous sec-

tion. Parameters are chosen so that the execution times of the functional simulation times are

reasonable. To further speedup the functional simulation model, the empirical latency distribu-

tion is replaced with a normal distribution. This was done because sampling from an empirical

distribution is relatively expensive requiring a binary search of the entire distribution file for

each sample produced.

In the first experiment, a normally distributed error latency with a mean of 44 minutes

and a standard deviation of 29 minutes (N(44, 29)rain.) was used. Two percent of the errors

injected were correlated, and memory scrubbing was not activated. The second experiment uses

the same parameters, except hourly scrubbing is activated. The third experiment evaluates the

functional model with two different latency distributions. The first is N(44, 29) minutes and the

second is N(36, 18) hours. Correlated errors are not injected and scrubbing is turned off. All

three experiments assume two minutes are required for global memory reintegration_ 2 seconds

for CPU reintegration and 70 seconds for POST.

The functional simulation program was retrofitted to extract the inter-failure times of the

processors and the global memories. Figure 7.10 shows how CPU inter-failure times are col-

83

Failuretimes

CPU CPU CPU
0 2 0

/),, J,,
I

×1 _

CPU CPU
1 2

I I
/\ /

I I

X3 X4

Samplepointscollected

Figure 7.10: Inter-failure times extracted from an execution of the functional simulation.

lected. Inter-failure times for the global memory are collected in an identical fashion. Note that

the failure distributions are collected without distinguishing between the specific components.

This approach was used for two reasons. First, it captures the occurrence of near-coincident

failures between components. Second, it significantly reduces the state space of the Markov

model in Figure 7.14 because there is no need to distinguish between the individual CPUs and

memory units.

For the first experiment, the functional simulation was executed once for a simulated pe-

riod of 300 years. The program took 40 minutes to complete on a Sun SparcI workstation.

Fifty thousand global memory, and 42891 processor inter-failure times were collected using the

method illustrated in figure 7.10. Histograms with a range from 0 to 18000 minutes (0 to 12.5

days) were used to group the samples. For the processors, 369 out of 42891 points (0.86%)

fell outside this range and were discarded as outliers. For the global memory, 24 out of 50000

(0.06%) were outliers. These points were discarded to simplify the histogramming and curve

fitting process. Removing these points should have little or no bearing on the system MTBF,

because the impact of a few, large inter-failure times is negligible.

For the second experiment, the event-driven simulation was executed for 700 years and

took approximately 100 minutes to complete. Approximately twenty thousand (20606) global

memory and 17,585 CPU inter-error arrival times were collected. The sample data was grouped

using histograms with a range from 0 to 575 hours (0 to 24.3 days). Between one and two percent

84

Measured and Fitted Failure Density Functions

0.30 -

0.024 -

0.006 --

0.000 { {

0 6 12

0.30 -

0.024 -

0.006 -

'l 0.000

18 0

l

6

{ {

12 18

CPU fail time (10 a min.) Global Mem. fail time (10 3 min.)

Figure 7.11: Failure density functions for experiment 1.

of the sample points fell outside the 575 hour range. For the third experiment one simulation

run was executed for a period of 300 years for each error latency distribution.

The empirical failure density functions f(x) for the processors and memory, for the first

experiment, are shown in Figure 7.11. The spikes near the Y-axis are caused by near-coincident

errors. The failure density functions for the second experiment are almost identical and are not

shown. The only difference is that the spike near the Y-axis is not as pronounced. Hence. in

spite of frequent, hourly scrubbing, latent, correlated errors substantially reduce inter-failure

times thereby increasing the number of system failures. The empirical failure probability density

functions f(x) for the two latency distributions used in the third experiment are shown in Figure

7.12. The functions with the larger latency are particularly interesting. The unique shapes arise

because a larger number of the latent errors are corrected when the system crashes or the board

in which they reside is re-integrated. Note that the spike characteristic of correlated errors is

not visible.

A two-phase hyperexponential distribution HYPER (al,)u, a2, A2) [70] was found to fit the

measured failure distributions collected from the first two experiments. The probability density

function for a two-phase hyperexponential random variable, denoted by

f(z) = a, Ale -_'t + a2A2e -_t (7.1)

85

0.012

0.009

0.006

0.003

0.000

Error Latency N(36 hrs., 18 hrs.)

7 0.012
I

, 0.008

0.004

i,'
0.000

0 6000 12000 18000

7

-- - - r - -

0 6000 12000 18000

CPU failure times in minutes Global Memory failure times in minutes

Error Latency N(44 rain., 29 min.)

0.021 7

!_ 0.04
0.014 i

0.03

oooi ooo.ooo o.o__- _--_ _
-- -- -- r

0 6000 12000 18000 0 6000 12000 18000

CPU failure times in minutes Global Memory failure times in minutes

Figure 7.12: Failure density functions for the two error latencies (Experiment 3).

86

Numberof
Phases

HYPO(A,, ...,A,-)
CPU Memory

0.000128, 0.00273 0.00299, 0.00301

0.000735, 0.000129 0.0005367, 0.000535

0.0006695 0.000611

0.000998, 0.0001181 0.000481, 0.000539

0.001010, 0.001546 0.001326, 0.001342

Table T.l: Empirical pdfs fitted with hypoexponential pdfs.

For the first experiment, the fitted hyperexponential failure distributions of the global memories

and the processors are HYPER(0.987, 0.00043, 0.013, 0.023) and HYPER(0.972, 0.000258, 0.028,

0.027), respectively. The fit was tested using both the Chi-square test and the Kolmogorov-

Smirnov test at the 0.01 significance level. Graphs of the fitted curves are also shown in Figure

7.11. They are not visible, because they are almost perfectly superimposed on top of the

measured curves. The fitted failure distributions for the second experiment are HYPER(0.9936,

0.00013, 0.0064, 0.09) and HYPER(0.9849, 0.00017, 0.0151, 0.095), for the global memories and

the processors. These also passed the Chi-square and the Kotmogorov-Smirnov test at the 0.01

significance level.

In the third experiment, both a 2-stage hypoexponential and a simple exponential distri-

bution was used for the case with the small error latency distribution. Both resulted in good

fits according to the Kolmogorov-Smirnov test and so the simpler exponential distribution is

used to represent the failure distribution. The specific fitted distributions are EXP(0.000260)

and EXP(0.000414) for the CPU and the global memory failure distributions, respectively. The

failure distributions for the case with the large error latencies could not be fitted with the expo-

nential distribution. The nature of the Markov model for hypoexponential failure distributions.

required that the single processor and global memory failure distributions be collected. The

functional simulation model was re-executed to collect the failure distributions of a single pro-

cessor and a single global memory board. To collect enough sample points, the simulation was

executed for 1200 years. The resulting failure distributions were fitted with 2-. 3- and 4-phase

hypoexponential distributions [70]. The pdf for an r-phase hypoexponential random variable,

87

denotedby HYPO(A1, A2..... AT) is:

f(z) = fi aiAie -:_'_
i=1

(7.2)

where

I-I" (7.3)ai
.L_ Aj - A_

j=l,j#i

The specific fitted hypoexponential distributions for the single memory and the single processor

failure distribution are shown in table 7.1. Only the 4-phased hypoexponential distributions

0.0180 "_

0.0135 _:

0.0090 _ '

0.0045

0.000 - - -r -

0 30000 60000 90000

0.0180 7

0.0135 -1
I

I

0.0090 -_
Ii

I

0.0045 _i:

0.000 -

0

I t 4-pha.se HYPO

I • 3-phase HYPO

'.:_pha.se HYPO,

10000 20000 30000 40000

CPU failure times in minutes Global Memory failure times in minutes

Figure 7.13: Empirical and fitted failure pdfs for a single processor & memory.

produced a good fit, according to the Kolmogorov-Smirnov test. The empirical failure distri-

butions and the fitted distributions are shown in figure 7.13.

Once the empirical failure distributions have been collected and fitted they are used with

Monte Carlo and Markov models to analyze the entire system.

7.3.3.1 Results from Experiments 1 and 2

The hyperexponential failure distributions for experiments 1 and 2 make the failure process

semi-Markov. Using a conversion technique [70], it can be converted to the Markov model

shown in Figure 7.14. The Monte Carlo simulation, however, can still simulate the model in

Figure 7.9 using hyperexponential sojourn times.

Table 7.2 shows the times taken and the results produced by the original functional simula-

tion and the hybrid approaches. For experiment 1, the functional simulation program, simulated

a period of 80 years for each run. For experiment 2, it simulated 120 years in each run. All

88

One CPU
One memory
failed

X3 One memory
failed

All Ok
One CPU
failed

One CPU
One memory
failed

k!

Z4

HYPER(al, _,I,),2) CPU failure distrbutJon

HYPER(a3, Z3, Z4) Memory failure distribution

a2_l-I or.4=OL3.-t

Some states are repeated

Not all arcs are shown

Figure 7.14: CTIvlC that models the system with hyperexponential failure distributions.

the results produced by the hybrid models fall within the 99% confidence interval of the results

produced with the original functional simulation. The largest deviation between the hybrid

models and the functional simulation model is 6.04%. The data in Table 7.2 demonstrates a

substantial reduction in execution time in favor of the hybrid models. Even taking into account

the time required to generate the empirical distribution, ther is more than a 36 time speedup

for experiment 2. The actual speedup will vary depending on the parameters of the model and

the can be much larger.

89

Exp.

2

Type

Sim.

Hybd. Mkv

ttybd. MC

Sim.

Hybd. Mkv

Hybd. MC

99% Conf. Int.

MTBF yrs.

1.9 2.03 2.18

2.12

2.09 2.11 2.13

4.39 4.8 5.33

4.51

4.957 4.96 4.975

Time

6.75 hrs.

8 sec.

50 sec.

36 hrs.

8 sec.

6.95 min.

No.

Runs

30

500

30

.

2000

Table 7.2: System MTBF obtained with the pure simulation and hybrid approaches.

7.3.3.2 Results from Experiment 3

For the case with the small error latency distribution (N(44, 29) minutes), the Markov model

shown in Figure 7.9 is used to determine the system reliability. The results obtained with the

hybrid techniques and the functional simulation are compared in Table 7.3.

Method

Simulation

Markov

Error

Latency

N(44 min., 29 min.)

N(36 hrs., 18 hrs.)
N(44 min., 29 min.)
N(36 hrs., 18 hrs.)

Failure Distribution

Type

Exponential

2-phase HYPO

99% Confidence Interval

(MTBF in years)
7.48 8.28 9.27

14.38 15.68 17.24

8.75

- 13.93

Table 7.3: System MTBF for the two error latencies (Experiment 3).

The general stochastic petri net (GSPN) description of the system that models a 2-phase

hypoexponential failure distribution is shown in Figure 7.15. Since by definition a 2-phase

hypoexponential distribution is the sum of 2 independent exponential distributions, the hypo-

exponential failure distribution is modeled by adding an extra .failing state between the OK

and failed states. The GSPN description can be easily extended to model 3- and 4-phase hy-

poexponential failure distributions by increasing the number of failing states to represent the

additional phases. A Markov model equivalent to the GSPN model in Figure 7.15 has 54 states

if the failure states are not coalesced. For the TMR system with 3-phase hypoexponential fail-

ure distributions, the equivalent Markov model contains nearly 200 states and for the system

with 4-phase hypoexponential distributions, the Markov model contains over 500 states. The

Sharpe tool was used to solve all three GSPN models. However, due to the rapid growth in the

9O

;rlobal

=mmoz',rok _.¥| kXcl'_! ok

I g'1olDlll

I I_alle4 fa£1e4

Figure 7.15: GSPN description with 2-phase HYPO failure distribution.

number of states of the equivalent Markov models, Sharpe was unable to solve the models for

the 3- and 4-phase hypoexponential failure distributions. The result obtained with the 2-phase

hypoexponential failure distributions is shown in Table 7.3. The result does not fall within the

99% confidence interval because the fitted 2-phase hypoexponential distributions fail to capture

the spike and they exaggerate the probability of having small inter-failure times.

The Monte Carlo program simulates the Markov model in Figure 7.9. Because individual

processor and memory failure distributions are not needed, the empirical distributions shown in

Figure 7.12 are input to the program. The MTBF figure generated by the Monte Carlo program

is 14.8 years and falls within the 99% confidence interval produced by the original simulation.

In the past, researchers have used point statistics rather than distributions for their statis-

tical models. For detailed functional simulation models of this nature and of the type described

in chapter 4, single point statistics may not be representative of the behavior of teh detailed

model it replaces. For experiment 1, if the mean inter-failure times are used (implying an expo-

nential distribution) the MTBF is 4.21 years. This is more than double the actual MTBF. This

demonstrates the need to consider an entire distribution because it demonstrates that various

distributions with identical means can produce significantly different results.

Once the measured failure distributions have been collected, the hybrid models can be

used to evaluate alternative configurations without reverting back to the original functional

91

Method Repair
Min.

Sim. 5.0
10.0

Monte 5.0
Carlo 10.0

Markov 5.0
Model 10.0

99%Conf. Int.
MTBF yrs.

0.99 1.04 1.09

0.59 0.61 0.62

1.09 i.I i.ii

0.616 0.62 0.625

- 1.06

- 0.60

Time

6.75 hrs.

6.75 hrs.

30 sec.

18 sec.

8 sec.

8 sec.

No.

Runs

30

30

5000

5000

Table 7.4: System MTBF for various memory re-integration times.

simulation. The impact of architectural changes that do not alter the failure distribution, such

as different re-integration times, can be evaluated rapidly. Table 7.4 contains results where the

global memory re-integration times of 5 minutes and 10 minutes are used. Results obtained

directly with the functional simulation are also shown to verify that the hybrid approaches

produce valid results.

7.4 Discussion

This chapter presented the acceleration approach provided by DEPEND. The approach, con-

sisting of an unique combination of hierarchical simulation, time acceleration and hybrid sim-

ulation, was illustrated in stages. The system evaluated was the Tandem Integrity $2 system.

Results of each stage were validated with either measurements from an Integrity $2 or from

a functional simulation that does not use the acceleration technique. The results demonstrate

that the acceleration technique can produce accurate results at a fraction of the cost. How the

approach is automated within DEPEND is described in Appendix A.

The acceleration approach replaces processes, which are difficult to model analytically and

expensive to simulate, with statistical models. For the Integrity $2 application, the statistical

models used were failure distributions. However, for different applications, other statistical

models may be used. The acceleration approach is particularly attractive if a system is analyzed

extensively. Then, the overhead of extracting and fitting distributions can be amortized over the

time needed to run various experiments and study alternative configurations. Using hierarchical

and hybrid simulation, it is possible to represent a complex, functional simulation (Figures 5.2

,_: 7.4) with a much simpler, abstract model (Figure 7.9). It is easier to apply variance reduction

92

techniquesto this modelthan the originalsimulationprogram. Finally, for extremelylarge,

complexsystems,wherethe complexityof tl_esubmodelsaresignificant,this approachcan be

usedrecursivelyon the submodelsaswell. This chapterillustratedhow the approachcan be

usedto includetheimpactof softwareunderhardwarefaultswhenanalyzingtheentiresystem.

This sameapproachmaybe a viablewayof includingthe impactof chip-leveldesignwhen

evaluatingsystemreliability measures.

93

Chapter 8

Analysis of the TMR-based System

The major issues in simulation-based dependability analysis have been discussed and our solu-

tions for them have been presented in the previous chapters. This chapter uses the DEPEND

tool, the simulation models described in chapters 5 and 6 along with the acceleration tech-

niques presented in chapter 7 to analyze a Tandem Integrity S2-1ike machine. The purpose of

the study is to investigate issues which include: correlated errors, accurate modeling of cor-

related errors, latent errors, inter-component dependencies during automatic repair, memory

scrubbing heuristics, application specific analysis of scrubbing schemes, impact of repair times.

impact of different configurations, and isolation of dependability bottlenecks. The study is

conducted in phases to isolate and analyze the impact of factors such as correlation and error

latency. In addition, studies that evaluate the combined impact of several of the factors are also

conducted. The goal of the study is to determine what error conditions are especially detri-

mental and what architectural features are especially susceptible to the types of errors injected.

This comprehensive study illustrates many of the capabilities of DEPEND in a realistic setting.

8.1 Assumptions and Parameters Used in the Simulations

For the most part, the studies use a standard set of failure rates, latency distributions and

architectural configurations. This section describes the parameters and the assumptions made.

When other parameters are used, it will be explicitly stated.

The error arrival means are based on findings from a measurement-based analysis of real

error data collected from a DEC VAXcluster multicomputer system[68]. Tang found that the

94

meantime betweenCPU errors (t/)_cPu) in the systemwas265.8hours with a standard

deviationof 497.6hours.The meantime betweenmemoryerrors(1/)_M_mo_u)was27.0hollrs

with a standarddeviationof 150.4hours. The combinederror arrival rate is approximately

1 every24 hours. Of this combinedrate, approximately62%of the errorsare injected into

the global memoryand 38%are injectedinto the processorboardcontainingthe CPUsand

the local memories.Thesenumbersarebasedon the sizeof the memories(8Mbytesof local

memoryperboardand32Mbytesofglobalmemoryperboard)andthecontributionof the CPU

errorarrival rateto thecombinederrorarrival rate. Of course,onecannotassertthat theerror

rate of the TandemIntegrity $2 is similar to that of the VAXcluster.Sincethe studiesarenot

concernedwith absolutereliability figuresbut rather with the trendsand changesto system

reliability dueto variousconditions,this doesnot posea problem.An exponentialdistributed

errorarrival rate is assumed.

Severaldifferenterrorlatencydistributionsareusedin thestudies.Thelatencydistributions

obtained in chapter6 are usedwhenstudyingdifferentmemoryscrubbingschemesand to

performapplicationspecificanalysisof the system.Otherwise,exponentiallydistributederror

latencydistributions with variousmeansare usedto analyzetrends in systemreliability as

the latency gradually increasesor decreases.Normally distributed latency distributions are

alsoused. In somestudies,very largelatenciesare usedand are basedon findings from a

measurementstudyof the VAX 11/780by Chillarege[9]. Chillaregefound that error latency

is workloaddependent.Errors injectedat midnight,whenthe workloadwaslow, had a mean

latencyof 8 hourswith a standarddeviationof approximately4 hours.Errorsinjectedat noon.

whenthe machinewasusedheavily,had a meanlatencyof approximately44 minutesand a

standarddeviationof 29minutes.Thesemeasurederrorlatenciesareapproximatedby normal

distributionswith themeansandstandarddeviationsjust mentioned.

All errors,includingundetectedlatenterrors,residingin a processoror in a globalmemory

are assumedto be correctedwhenthe componentundergoesa re-integration,the systemis

rebootedor whenscrubbingtakesplace- regardlessof the numberof latent errors residing

in the system.Therefore,not all the errorsinjectedaredetectedand the actual error arrival

distribution of detected errors depends on the scrubbing rate, the component re-integration

rate, the error latency and the injection rate. Because error latencies and global memory re-

integration times are workload dependent, various system workloads are implicitly modeled

95

by varyingtheseparameters.Finally,sinceweareprimarily concernedwith transienterrors,

permanenterrorsare not injectedand the MTBFs presenteddo not reflect their impact on

systemreliability. The votersare assumedto be error free. For most studies,the repair

coverage,the probability that a failed componentwill be successfullyre-integratedinto the

systemafter anerror is detected,is assumedto be 1solongasa seconderror is not detected

beforethe re-integrationis completed.

Exceptwhereexplicitly stated,thesimulationsareexecutedwith aPOSTtimeof60seconds,

a global memory re-integrationtime of 2 minutesand with memoryscrubbingturned off.

The meantime betweenfailures(MTBF) is calculatedby dividing the simulationperiod by

the averagenumberof systemfailures. The confidencelevel for the results shownis 95%

for an interval with a relativehalf-widthof 5%. The MTBF figurespresentedin this paper

shouldnot beconstruedto reflectthe MTBF figuresof an actualTandemIntegrity $2system

becausethe error arrival rate whichhasa direct bearingon this measure,wasnot obtained

from measurements of the Tandem Integrity $2.

8.2 Impact of Latent Errors

In this section, several experiments are conducted to determine the impact of latent errors

on the MTBF of the system. Although there have been many studies to measure fault and

error latency [9, 45, 63, 66, 74] and most researchers conjecture that latency degrades system

reliability, there are very few studies that have actually tried to quantify and determine the

impact of latency on the system. In [66], the authors study the effect of latency (which they

define to be the sum of fault and error latency) on a TMR flight control system. They derive

the probability of system failure as the probability of a second failure that produces the same

erroneous output as an earlier, latent error. With both errors triggering at the same time,

the voter is fooled and the error escapes and affects the flight control system. A gate-level

simulation of one of the processors was injected with faults to determine parameters used in

the derivation. Their results show that unless the latency is very large, the effect of latency on

system reliability is very small.

In this study, we analyze the impact of the accumulation of latent errors in the system.

If there are a large number of latent errors in the processor boards, is the probability of a

96

SystemMTBF in years
Mean(min.) Exponential Normal

2
4
8
16
32

64

6.9 -t-0.33

6.56 5=0.32

7.1 +0.35

7.04 5=0.34

7.08 5=0.34

6.64 5=0.33

6.4 5=0.32

6.83 5=0.34

7.0 5=0.35

6.77 5=0.34

6.87 5=0.35

7.05 5=0.36

Table 8.1: System MTBF for two latency distributions with various means.

near-coincident error increased? The study also considers the inter-dependencies due to latent

errors. In the Integrity $2, a latent error in a healthy CPU that is detected during re-integration

will cause the system to fail. Latent errors can also propagate creating more errors, however,

this effect is not considered in this study.

In the first experiment, the effect of an accumulation of latent errors is investigated. Errors

are injected into the system at a rate of one error a day. Exponential and normal latency

distributions with various means are tried to determine if there is a trend in system MTBF. For

the normal distributions, the standard deviation is always half the mean. Table 8.1 presents the

results of the simulation. The MTBF for the case in which the latency is zero is 6.76 (+0.32)

years. The table indicates that the MTBFs for all the latency distributions produce results

similar to the case when there is no error latency. This is due to two factors. First, because the

error latency is much smaller than the error arrival rate, there is not a substantial accumulation

of errors. Second, the detection of any error in a processor and the ensuing re-integration erases

all other latent errors in the processor thus further reducing the accumulation of latent errors.

The table also shows that the specific distribution of the latency times, whether normal or

exponential, does not affect system MTBF.

To increase the accumulation of latent errors, two system I error arrival rates are tried:

one error every 30 minutes and one error every 5 minutes. The effect on system MTBF,

for exponential latency distribution times, is shown in Table 8.2. Detailed analysis of the

simulation output files shows that the number of accumulated error in a processor or global

memory increases, however, it still fails to reduce system MTBF. On the contrary, the system

1This is the number of errors injected into the system and not into each component.

97

MeanLatency
in minutes

0

2 0.0034

4 0.0033

8 0.0037

16 0.0041

32 0.0052

64 0.0068

System MTBF in years

A = 1/30min. [A = 1/5min.
0.0031 ±0.00016 0.0001 ±0.00001

±0.00018 0.0001 ±0.00001

±0.00017 0.0002 ±0.00001

±0.00018 0.0002 ±0.00001

±0.00021 0.0003 ±0.00002

±0.00026 0.0004 ±0.00002

±0.00036 0.0007 ±0.00004

Table 8.2: System MTBF for two fast error arrival rates.

MTBF increases with larger latency times indicating that the accumulation of errors alone is

not detrimental to system reliability. The increase in the MTBF occurs because the latency

times are of the same order of magnitude as the error arrival rate and hence they increase the

mean time between error detections noticeably.

These results indicate that the accumulation of latent errors, in and of itself, does not

cause near coincident errors. However, the study was made under two assumptions. First.

re-integration coverage is 100% and second, re-integration coverage does not depend on the

state of the other components in the system. That is, there is no intercomponent dependence

(see chapter 4). In reality, in the Integrity $2, the remaining healthy processors in the system

control the re-integration of the faulty processor. During re-integration, the entire content of

the two healthy processors is copied to the faulty one. If during that time, there is a discrepancy

in the contents of the two healthy processors, the system fails. The same holds for the global

memory boards. To model this scenario, the simulation model fails during re-integration if any

healthy component contains a latent error. Table 8.3 contains the results for various different

exponentially distributed latency times. The error arrival rate is one error a day. The results

very clearly indicate the adverse impact of latent errors on system MTBF. Even with a mean

latency time of just 2 minutes, and a system error arrival rate of 1 per day (which means, an

error is injected into a processor once every 8 days, and into a global memory board once every

3.2 days) system MTBF is slashed by more than 50 percent. As the latency times increase, the

MTBF is further degraded.

To summarize, the accumulation of latent errors does not cause near coincident errors.

Rather, it is a combination of error latency times, system activity and repair policy that cause

98

MeanLatency SystemMTBF
in minutes in years

0

2

4

8

16

32

64

6.7 ±0.32

3.14 -I-0.16

2.09 5:0.11

1.35:0.07

0.75 +0.04

0.40 -t-0.02

0.32 4-0.01

Table 8.3: System MTBF with inter-component dependence.

near coincident errors that adversely impair system reliability. A system 5ke the Integrity $2

is especially vulnerable to latent errors because its on-line re-integration scheme requires that

the entire contents of the healthy boards be copied to the newly re-integrated board. Thus

any latent error, in any segment of either healthy board, is guaranteed to cause system failure.

Other systems with different repair policies may not be as sensitive to latent errors. To properly

evaluate and quantify the impact of latent errors, it is imperative that system activity such as

repair policies be incorporated into the model.

8.3 Impact of Correlated Errors

TMR systems have been shown to be extremely effective against single, independent errors.

[n this experiment, correlated errors are injected to determine their impact on system relia-

bility. Inter-component dependence is not modeled in the first two experiments. In the first

experiment, errors with zero latency are injected, and of these, 2% are correlated errors (see

Figure 7.4). The modeling is similar to the 'partial coverage' technique commonly used with

analytical models. The system MTBF was found to be 0.129 (+ 0.006) years. Comparing this

to an MTBF of 6.76 years (determined when latency is zero and there is no correlation) we

see that even a very small fraction of correlated errors causes an order magnitude reduction in

the MTBF. However, measurement studies [67, 73] show that correlated failures do not occur

simultaneously as modeled here.

Correlated errors with latency are used to mimic the phenomenon of "staggered machine

failures" found to be caused by correlated errors [73]. Table 8.4 shows the system MTBF for two

99

SystemMTBF in years
NormalCx = 0.5Mean (min.) Exponential, Cx = 1

2 0.216 -i-0.006

4 0.334 4.0.011

8 0.560 4-0.016

16 0.960 4.0.048

32 1.67 4.0.083

0.158 4.0.008

0.245 4.0.012

0.453 4.0.023

0.825 4-0.041

1.46 4-0.073

2.46 4.0.123

3.65 +0.182

5.05 4.0.252

6.61 4.0.33

13.2 4-0.683

64

120

240

480

2160

2.71 4-0.129

3.97 4.0.201

5.36 4.0.266

6.59 4.0.333

12.06 4-0.6

Table 8.4: System MTBF for two latency distributions with various means.

latency distributions, exponential and normal, with various means. The standard deviation of

the normal distributions were set to 1/2 of the mean. The most important result shown in the

table is that when error latency is considered, the degradation in the MTBF due to correlation

is not as significant and may not be orders of magnitude less. For instance, when the mean of

the latency distribution is 32 minutes, the MTBF is nearly 13 times larger than the case when

error latency is not considered. For really large latency times exceeding 16 minutes, there is no

longer an order degradation reduction in the MTBF, and for very large latency times, there is

an increase in the MTBF. The table also shows an inverse relationship between the degradation

in the MTBF and the mean of the latency distribution.

The results in Table 8.4 also show that the normal latency distribution produces smaller

MTBF figures. The difference in the MTBF between the two types of distributions is sta-

tistically significant for means upto 32 minutes, and in cases are 25% smaller. To determine

whether this phenomenon is a characteristic of the normal distribution or due to the fact that

the coefficient of variation (Cx = a/_) is smaller than that of the exponential distribution, the

experiment was repeated with different C_ values. Table 8.5 contains the results. Recall that

the coefficient of variation for the exponential distribution is always 1. The results in Table 8.5

show that increasing Cx increases the system MTBF. It also shows that even when the Cx of

the normal distribution is the same as that of the exponential distribution, its MTBF figures

are, for the most part, statistically different, and in this case larger. The reason is that the

100

SystemMTBF in years
Mean(min.) Cx = 0.5 Cx = 1.0 Cx = 2.0

2

4

8

16

32

64

0.158 4-O.O08

0.245 4-0.012

0.453 4-0.023

0.825 4-0.041

1.46 4-0.073

2.46 =}=0.123

0.211 :t:0.01

0.368 4-0.018

0.649 4-0.032

1.26 4-0.063

2.09 +0.104

3.38 4-0.169

0.328 :kO.O16

0.5832 4-0.029

1.0691 4-0.0538

1.8015 4-0.09

2.8108 4-0.139

4.0841 4-0.203

Table 8.5: System MTBF for the normal latency distributions with varying C_ values.

Mean (rain.
2

4

8

16

32

64

System MTBF in years

Exponential, C x = 1

0.126 +0.006

0.124 ±0.006

0.115 4-0.006

0.11 4-0.005

0.099 4-0.005

0.081 4-0.004

Normal Cx = 1.0

0.128 4-0.006

0.124 4-0.006

0.114 =k0.006

0.106 4-0.005

0.094 4-0.005

0.073 4-0.004

Table 8.6: System MTBF for the exponential and normal latency distributions with inter-

component dependence.

exponential distribution has a larger density of latency times below the mean, thus there is an

increased probability that two correlated errors will be detected near coincidentally.

The results of both tables seem to indicate that the larger the latency the better. In fact. in

Table 8.4 the system MTBF is nearly doubled (from the case with zero latency) for latency times

with a mean of 36 hours. However, recall these experiments do not consider inter-component

dependence. Table 8.6 shows the MTBF figures obtained when inter-component dependence is

considered. Now it becomes clear that for this a_hitecture, the smaller the latency the better

the system MTBF.

To summarize, the experiments conducted reveal that simple analytical models that fail

to consider error latency exaggerate the impact of correlated errors. If latency is considered,

the impact of correlated errors is noticeably less, and it becomes negligible if the latency is

very large. In the previous section where correlated errors were not injected, there was no

statistically significant difference in the MTBF results produced with the normal and exponen-

101

tim distributions (seeTable8.1). In this section,for meanslessthan 64minutes,the latency

distribution producestatistically differentMTBF figures. Betweenthe exponentialand nor-

mal distributions,if theyboth havethesameCx value, the exponential distribution produces

smaller MTBF figures. Furthermore, the larger the Cx, the larger the MTBF. What this means

to the designer is that if the latency times are very small, correlated errors are more likely to

have an adverse impact. If the latency times are very large, correlation is not as important an

issue. Typically, however, latency distributions are mixed with a large number of errors with

small latency times and a few with very large latency times. The latency times obtained in

chapter 6 follows this behavior. With such distributions, their will not be a pronounced increase

in the MTBF as the mean of the latency distribution is increased. Furthermore, correlation

will noticeably degrade system MTBF.

8.4 Evaluation of Memory Scrubbing

Recall that the Tandem Integrity $2 relies on memory scrubbing to correct latent faults in

the CPU and Global memory boards. In this section, experiments are conducted to determine

the effectiveness of the existing scrubber. In chapter 6, the software environment was used

to determine the application specific coverage of the existing scrubber and that of a proposed

"dual" scrubber, for a single processor. In this section, the hierarchical approach, described in

chapter 7, is used to extend the application specific analysis to consider the whole system and

perform a more complete analysis of the two scrubbing schemes.

Memory scrubbing has been evaluated analytically in [55]. The authors assume that all

words in memory are accessed with equal probability and access times are exponentially dis-

tributed. They provide an exact upper and lower bound on the MTBF for exponentially

distributed scrubbing and an approximate upper bound for deterministic scrubbing. Deter-

ministic scrubbing is shown to provide MTBFs that are twice as large. The approach is very

useful when evaluating a single memory system under the assumption of uniform memory ac-

cess. In our simulation-based study, we consider several memory boards, their different repair

times, error latency, inter-component dependence inherent in the architecture and the effect of

a specific application running on the system, when evaluating the MTBF. Furthermore, with

the simulation-based approach we are also able to provide coverages of the scrubbers. Some of

102

these aspects can be included in a CTMC model. To understand how much can be accurately

captured, a general stochastic Petri-net tool was used to model just the three processors and

the memory scrubbing scheme. Issues such as application specific analysis and intercomponent

dependence were not addressed. The Petri-net model shown in Figure 8.1 resulted in a 2000

state CTMC for n = 6, the maximum number of accumulated latent errors in a board. Table

_l_lat v n

v

error trri_ rate per

e_o: latency -- _pemden_

oa mmber o1_ latmt errors

reg4J_r rate

sc_d_lag rate

mmb_ of l&temt

e_-rors in • c_m

V eLI V tokens are noted

L_LtLal token placement

Znhlbitor arcs [r-- __fall

to all t_ tr_iti_ t_e

Figure 8.1: Petri-net model of the three CPUS with memory scrubbing.

8.7 shows the MTBF figures obtained with the Petri-net model, a DEPEND simulation model,

and the relative difference of the Petri-net model. The large difference in the results of the

Petri-net model are due to its inability to model the deterministic progression of the scrub-

ber through the memory and because it assumes an exponential scrubbing rate which does

not bound the scrubbing interval to 60 minutes. The DEPEND simulation, however, models

the location at which each error is injected, the location of the scrubber at the time of each

injection and the exact time the scrubber takes to detect and correct each error. A 5-stage

Erlang distribution was used to replace the exponential scrubbing distribution, but this pro-

vided only a small improvement in the results at a cost of increasing the number of states to

10,000. Interestingly, because the percent difference varies with the latency, the designer can

never be sure how close the model results are to the real values. This example shows that a

CTMC can be used to provide a rough estimate of a deterministic process. It also justifies the

need for a simulation-based study which can provide more accurate results, permit the use of

103

non-exponential distributions, represent dependency caused by latency, and allow application

specific analysis. What follows is a step by step analysis of the existing single and a new dual

scrubber.

Mean

Latency (min.)
2

4

8

16

32

64

128

MTTF (yrs.)
DEPEND Petri-net

6.002 6.46

6.54 6.80

7.59 7.47

11.05 8.9

20.21 12.07

45.19 19.75

141.05 40.34

Percent

Difference

7.67

3.98

1.58

19.45

40.28

56.63

71.39

Table 8.7: Comparison of MTBF obtained with DEPEND and the Petri-net model.

The effectiveness of the scrubber is intimately tied to the error latency distribution. Figure

8.2 shows the MTBF of the system, with and without scrubbing, for exponentially distributed

latency times with various means. The scrubber sweeps through the entire memory every

70-

M
T
B
F

6O

5O

4O

y 30
r
s

2O

10

I I I I I
24 8 16 32 64

With Scrubbing

No Scrubbing

Mean Error Latency (min.)

Figure 8.2: System MTBF for various latency distributions (Hourly Scrubbing).

104

MeanLatency Scrubber
in minutes Coverage

2
4

8

16

32

64

0.033

0.066

0.132

0.258

0.45

0.65

Table 8.8: Scrubber coverage for various exponential error latency distributions.

hour. As the mean of the latency distribution increases, the coverage of the scrubber increases

rapidly (Table 8.8). For small latency distributions with means of 2 to 4 minutes, the scrubber

improves the MTBF by only 7% from the base case with no scrubber. But for means of 32

and 64 minutes, the scrubber increases the MTBF by 232% and 827%, respectively. Hence the

scrubber is most effective against errors with large latency times. These errors mostly reside

in unused or seldomly used parts of memory. Errors within actively used parts of memory are

typically detected by the process of execution and causes the board containing the error to be

shutdown. The ineffectiveness of the scrubber against small error latencies was also found in

[76] in which the author used memory traces and simulation to estimate the scrubber's coverage.

Next we simulate the intercomponent dependence caused by latent errors is to test the

effectiveness of the scrubber. Figure 8.3 shows the MTBF of the system, with and without

scrubbing. Without the scrubber, the system MTBF degrades monotonically as the mean of

the latency distribution increases. Even with a small mean of 2 minutes 2 there is more than

a 50% degradation in the MTBF (3.14 years) when intercomponent dependence is modeled.

With hourly scrubbing, the MTBF increases to 3.47 years, and with a scrubbing cycle time of 30

minutes, the MTBF reaches only 3.56 years. As the figure shows, except for the case with a mean

latency of 128 minutes and a 30 minute scrubbing cycle time, intercomponent dependence caused

by latency reduces the system MTBF significantly. It also illustrates that memory scrubbing, at

realistic cycle times that do not impose a noticeable performance overhead, are quite ineffective

against this phenomenon. The MTBF curves in the figure, for all three scrubbing periods, do

2The smMler the latency time, the smaller the probability of a system failure due to intercomponent (|epen-

dence caused by latency.

105

8 -- Scrubperiod:30 rain.

M
T
B
F

Y
r
s

6

5

4

3

2

0

i

I1[I
024 8

.. ,

t I I I t I
16 24 32 48 64 128

Scrub period: 60 min.

Scrub period: 120 min.

No Scrubbing

Mean Error Latency (rain.)

Figure 8.3: System MTBF when inter-componentdependence ismodeled with hourly scrub-

bing.

not decrease monotonically. This is due to the trade-off between small and large latency times.

Though errors with small latencies are less likely to be corrected by the scrubber they are also

less likely to cause a near-coincident errors due to intercomponent dependence. Errors with

large latency are more likely to cause near-coincident errors, but are more likely to be detected

and corrected by the scrubber. The minimum MTBF occurs for a mean latency that is half

the scrubber's cycle time. For example, the smallest MTBF for the scrubber with a 30 minute

cycle time occurs for the latency distribution with a mean of 16 minutes. This information is

very useful to the designers because if they have some general idea of the latency distribution

of the system, they can avoid using a scrubbing period at its minimum effectiveness point.

In chapter 6, an abstract representation of the Gauss program was executed to obtain

detection latency times and to evaluate two scrubbing schemes. The analysis focussed on the

coverage of the existing and the newly proposed 'dual' scrubbing scheme with respect to active

errors that are detected by the process of program execution. In the experiments that follow,

106

the analysis of the scrubbers is also extended to consider the rest of the memory and the overall

impact they have on system MTBF. Without such a complete analysis it is difficult to determine

which scheme is more effective in improving system reliability. As it is not possible to directly

perform the detailed evaluation in chapter 6 while also considering the rest of the system.

the hierarchical approach described in chapter 7 is used for this extended analysis. Executing

several instances of the Gauss PCFGs on the three processors while also modeling all the

scrubbers, the global memory system and the re-integration process will require astronomically

large simulation times. Instead, the execution of the PCFGs is replaced with their collected

detection latency times. For the experiments, the CPU memory is logically divided into two

segments: the application space and the system space. The size of the application space is a

multiple of the of the size of the memory image of the actual Gaussian elimination program times

the number of Gauss programs assumed to be executing. The detection latency of the errors

injected into the application space is sampled from the collected empirical latency distribution

file. For instance, to model the execution of four Gauss programs, the latency distribution

collected when four Gauss PCFGs were executed is used in this simulation. The CPU memory's

system space and the global memory are injected with errors having exponentially distributed

latency times with a mean of 16 minutes. Both the single scrubber and the dual scrubber are

tested under this configuration. The ratio of the overheads of the dual scrubber (see Equation

6.4) versus the single scrubber used are 1, 2, 4, 8, and 16. Recall that the dual scrubber has two

scrubbers. One scrubs system space and the other scrubs the application space. By making the

system space scrubber operate at a rate four times slower than the single scrubber, it is possible

to scrub the application space frequently and still maintain an overhead ratio of 1. The other

overhead ratios are obtained by further speeding up the rate of the application scrubber. The

question is what happens to system MTBF with this scrubbing configuration?

Figure 8.4 plots the application specific MTBFs obtained with the single scrubber and the

dual scrubber for 1, 4 and 16 simultaneous executions of the Gauss program. The percent of

the CPU memory allocated to the application space and the mean of the empirical distribution

which represent the execution of the programs are listed in Table 8.9. The results show that

the single scrubber provides similar or better MTBF figures than the dual scrubber. Table

8.10, which shows the coverage of the single scrubber and the dual scrubber with an overhead

ratio of l, indicates why this is the case. Even though the application scrubber's coverage is

107

M
T
B
F

Y
r
s

14-

13

12

11

I0

9

8

7

6

5

4

3
.

2

i
.

0
S DID2D8 S DID2D_ S D1 D2 D8

S Single scrubber
D1 Dual: ovhd. ratio = I
D2 Dual: ovhd. ratio = 2
D8 Dual: ovhd. ratio = 8

! I i

I 4 16

Number of Programs

Figure 8.4: System MTBF obtained with the singleand dual scrubbing schemes.

Number of Percent of Mean Latency

Programs CPU Memory in Seconds
1 0.5 8.8

4 1.64 31.34

16 6.6 116.95

Table 8.9: Parameters of the experiment.

108

Dual Scrubber (Ovhd. = 1) Single Scrubber

No. Appl. Space Sys. Space Overall Overall

Programs Coverage Coverage Coverage Coverage

1 0.33 0.066 0.068 0.26

4 0.32 0.067 0.07 0.26

16 0.31 0.066 0.08 0.24

Table 8.10: Coverage of the two scrubbing schemes.

System MTBF in years

Scrubber

Single

Dual (Ovhd. = 1)

Dual (Ovhd. = 2)

Dual (Ovhd. = 4)

Application Space (Percent of CPU memory)

5%] 10%] 20%] 30%] 40% 50%

12.19 12.01 12.56 11.95 12.18 12.76

11.54 12.34 11.96 11.75 12.31 11.85

11.8 12.37 12.23 12.33 11.85 11.76

11.63 11.95 11.86 11.71 11.57 12.13

Table 8.11: System MTBF obtained for various application memory space sizes.

very high, the overall coverage of the dual scrubbing scheme is low because most of the errors

are injected into system space, where the scrubbing occurs with a cycle time of 4 hours. As a

result, the single scrubber's coverage is on average four times higher.

Next, we arbitrarily increase the size of the application space to see how the scrubbers

perform. Application space sizes that are 5, 10, 20, 30, 40 and 50 percent of the total CPU

memory are tried. The empiricM latency distribution obtained for 4 Gauss programs is used for

all errors injected into the application space. Table 8.11 contains the MTBF figures obtained for

the two scrubbing schemes. In spite of increasing the application space, there is no statistically

significant improvement in the MTBF figures obtained with the dual scrubbers. This is because

as the size of the application space increases, the scrubbing frequency of the application space

scrubber must be reduced to maintain reasonable overheads. Hence, as the application space

increases, the coverage of its scrubber decreases thus offsetting any gains.

Since the introduction of the Integrity $2, the memory configuration has changed to improve

the performance of the machine. The newer Integrity $2 machines come with larger CPU

memory and smaller global memory. The experiments in which we vary the application memory

space size is repeated with a configuration where the CPU memory size is 64Mbytes and the

109

Single
Dual (Ovhd. = 1)

Dual (Ovhd. "- 2)

Dual (Ovhd. = 4)

System MTBF in years

Scrubber ApSe Percentof CPU memory)
I 5% I 1°% I 20% 13°% 14°% I

13.79 12.15 12.17 11.52 10.60 10.18

8.8 8.97 8.73 8.66 8.19 8.3

8.8 8.87 8.77 8.95 8.08 8.62

9.03 9.15 9.16 9.23 8.95 8.73

Table 8.12: System MTBF obtained for various application memory space sizes with the new

memory configuration.

global memory size is 16Mbytes. The error arrival rate is kept fixed (for comparative reasons)

but the percent of errors injected into the CPU memory has increased to 85% due to its larger

size. Table 8.12 lists the MTBF figures obtained with the new memory configuration. With a

larger percent of errors injected into the CPU, the difference between the two scrubbers is even

more apparent. Here, the dual scrubber produces MTBF values that are up to 25% lower.

To summarize, the evaluation of memory scrubbing shows that it is only effective if the

error latency is large. For mean latency times exceeding 30 minutes, hourly scrubbing can

improve the MTBF by over 200%. Increasing the frequency of the scrubber can improve its

coverage of errors with smaller latency times but at a cost of high performance overhead. Fur-

thermore, as shown in chapter 6, increasing the scrubbing frequency beyond a certain point

provides diminishing increase in the coverage. The scrubbing scheme was found to be very inef-

fective against near-coincident errors caused by error latency. However, if the latency times are

very large, the scrubber provides reasonable improvement in the MTBF. When the possibility

of near-coincident errors caused by latency is modeled, the MTBF curves no longer increase

monotonically with an increase in the mean of the latency times (compare Figures S.2 and S.3).

The experiments show that the minimum MTBF point for the scrubber occurs as the mean

latency time approaches half the scrubber's cycle time.

The entire memory will not display the same detection distribution because it varies with

time and with the frequency and nature of use. To model applications exercising the memory,

detection latency times obtained from detailed simulations in chapter 6 are used. Portions of

the CPU memory, the application space, allocated to the applications are injected with latency

times sampled from these empirical distributions. This configuration was then used to evaluate

110

the existingsingleand the proposeddualscrubbersfrom a systemperspective.The natureof

the Integrity S2'sre-integrationmechanismmakesthedualscrubberineffectiverelativeto the

singlescrubber.This is in spiteof the fact that it providesordersof magnitudeimprovement

in coveragefor the applicationspace.The problemis twofold. First, the applicationspaceis

small comparedto the rest of the memory.Second,to limit the overhead of the dual scrub-

bet, the rest of the memory is scrubbed at a much slower rate than the existing scrubber. By

slowing down the scrubbing of the rest of the memory, the system becomes more vulnerable

to near-coincident errors. This extended analysis of the scrubbing schemes, possible with the

hierarchical technique, made it possible to perform a complete analysis of the scrubbers and

quantify their coverage and the system MTBF figures they would produce. With this informa-

tion, it was realized that the dual scrubber, which seemed so promising with respect to just the

application, reduces the dependability of this system as a whole.

8.5 Impact of Repair Times

The Integrity $2 is designed to tolerate single faults. For such systems, the time needed to

repair a faulty component is referred to as its window of vulnerability. If a second fault arrives

within this window, the system fails. The CPU re-integration time consists of 60 seconds

to perform a power-on self-test (POST) and 1.5 seconds to re-integrate the CPU. The re-

integration time cannot be easily reduced but the POST time can be cut by using different self-

checking programs. Since most errors are caused by transient faults, reliability can be improved

by performing a perfunctory check that takes a few seconds and immediately initiating a re-

integration. If another error is detected in the same board shortly thereafter, a more thorough

POST program can be executed to check for permanent defects. The re-integration time for

the global memory varies with workload, but it can be reduced by increasing the priority of

the re-integration process. In this section, simulations are conducted with various POST times

and global memory re-integration times to quantify their impact on system MTBF. Specifically,

POST times of 10, 20, 30, 40, 50 and 60 seconds and the global memory re-integrations times

of 1, 2, 5 and 10 minutes are used in the simulations. Memory scrubbing is not activated and

a exponential error latency distribution with a mean of 16 minutes is used.

iii

a) Fixed CPU POST time: 60 sec. b) Varying CPU POST Times

M
T
B
F

Y
r

14

12

I0

8

6

4

2--

0 -

12

1o

6
s 4

1. min.

2 min.

2

0
II I I

1 2 5 10 0 10 20 30 40 50

5 min.

10 min.

I

60

Global Mem. Re-integration (min.) CPU POST Times (sec.)

Figure 8.5: System MTBF for various subsystem re-integration times.

The simulations are first executed with the original memory configuration (8MBytes of CPU

memory and 32Mbytes of global memory). With this configuration, where most of the errors are

injected into the larger global memory, the global memory time is the dominant factor. Figure

8.5a shows that the system MTBF decreases monotonically as the global memory re-integration

time is increased. Since the global memory is re-integrated on the fly, its re-integration time

varies depending on the workload on the system (see Table 5.1). Figure 8.5a can also be

interpreted to reflect the system MTBF for varying workloads. As the workload increases, the

reliability of the system decreases. Figure 8.5b illustrates what little impact changing the CPU

time has on system MTBF. This is especially the case as the global memory re-integration time

is increased. Clearly, for this memory configuration, the global memory re-integration time is

the bottleneck.

The experiments are repeated in which the inter-component dependence due to latency is

modeled. The system MTBF for mean latency times of 16 and 8 minutes are listed in Table

8.13. Note that when the dependence is modeled, varying the global memory re-integration

time does not have as significant an effect on system MTBF. This is because, for the Integrity

$2, each latent error injected into the system creates a window of vulnerability. For instance.

if a latent error X is injected into CPUA, an error detected in the two other CPUs before X

is corrected will cause a system failure. So each latent error creates a window of vulnerability.

112

MTBF in years

Global Memory Mean Latency

Re-int Times (min.) 8 minutes I 16 minutes

1

2

5

10

1.47

1.3

1.0

0.79

0.76

0.74

0.63

0.54

Table 8.13: System MTBF with modeling of near-coincident errors.

If the error latency is large, they more so than the POST and global memory re-integration

times, become the dominant factor that determine system reliability.

The first experiment was repeated with the new memory configuration in which each CPU

contains 64Mbytes and each global memory has 16Mbytes. For ease of comparison, the error

arrival rate was not varied, however, the ratio of errors injected into the CPU and global

memory were changed to reflect their change in relative sizes. With this configuration, 85%

of the errors are injected into the CPUs. Figure 8.6 shows that now the CPU POST time is

the more dominant factor. Varying the global memory re-integration time does not have as

dramatic an affect as seen in Figure 8.5a. Comparing Figures 8.5b and 8.6b, one sees that

the system is more reliable with the new configuration. Given two systems with the same

amount of total memory (CPU and global memory), the system which has apportioned more

memory to the CPUs will have a higher reliability. This is because CPU re-integration takes

less time and is not done in the background. Of course, global memory re-integration can be

performed at a high priority like the CPU, but since the system also performs better when the

local CPU memory is large it makes more sense to re-apportion the memory. Part of the reason

for the higher performance is that access time to the local memory is smaller and there is no

synchronization overhead to be paid.

To summarize, reducing the global memory re-integration time and the CPU POST time

can improve system MTBF. Which re-integration time to reduce depends on the system config-

uration, with the component with the highest error arrival rate being the reliability bottleneck.

Since CPU re-integration times are smaller than global memory re-integration times, apportion-

ing more memory to the CPUs improves system reliability. It also improves its pertormance.

Experiments in which inter-component dependence caused by latency is modeled show that

113

a) Varying Global Mere. Re-int. times b) Varying CPU POST Times

M
T
B
F

Y
r

s

.=

14 --

t2 -

10 --

8--

6--

4-

2-

0 -

40-

i

60sec. y --
r 15

s _o-

5-_-

0 -

10 min.
.... 5 min.

• .2 min.
• . . , , . .

_mln

{ { { { { { { { { {

1 2 5 10 0 10 20 30 40 50 60

Global Mere. Re-lntegration (min.) CPU POST Times (sec.)

Figure 8.6: System MTBF for various subsystem re-integration times - New Memory Config-
uration.

error latency creates a window of vulnerability for this architecture, and this has the most

dominant affect on system reliability. When modeling inter-component dependence, reducing

CPU and global memory re-integration times does not noticeably improve system MTBF.

114

Chapter 9

Conclusion

The contribution of this thesis is the development of a methodology for functional simulation-

based system level dependability analysis of fault-tolerant computer systems. Simulation-based

approaches have mostly been used at lower levels, for example at the gate level where the func-

tionality of the basic components are simple and their interconnections and inter-dependencies

are well defined. At the system level, simulation-based approaches have been either Petri-net

based extensions of analytical tools or have been designed to analyze only a small set of ar-

chitectures. Our proposed methodology is unique in that it addresses many of the difficulties

and issues that have limited the applicability and utility of these existing simulation-based ap-

proaches. The proposed methodology is designed to be generally applicable to a wide variety of

architectures and can model various fault conditions. It permits detailed functiona| modeling

of architectural features such as sparing policies, repair schemes, routing algorithms as well as

other fault-tolerant mechanisms. The approach permits actual execution of application soft-

ware for more realistic modeling. In addition, it allows the abstract representation of software

algorithms when actual code does not exist. Through this abstraction it is possible to study the

behavior and effect of the software on hardware faults and perform application specific analysis

of system level fault-tolerant mechanisms in the early design phase. Finally, unlike any other

existing simulation-based approach, an acceleration technique is proposed and implemented

that makes it possible to study fault-tolerant systems for extended periods of time.

The effectiveness of any methodology is best determined when actually implemented and

tested. The methodology has been incorporated into a software tool called DEPEND. Since

115

its development,the tool hasbeenused(andis beingused)to analyzethe TandemIntegrity

$2 system,the CIvl-5 Connection Machine, a distributed system executing a load balancing

algorithm, the computing element of the Hubble Telescope, a proto-type switching system

developed by Raynet, the Parsytec distributed computer being developed in conjunction with

the European Esprit Project and the Data Management System of the Space Station. In

addition, the tool has been ported to Tandem Inc., Thinking Machines, Raytheon Company,

IBM Federal Systems, NASA Langley, and NASA Ames for the purposes of evaluation and use

in studying prototype designs.

The section below summarizes the main facets of the methodology and the experiments

used to illustrate and validate the features of DEPEND. The thesis ends with a section that

suggests possible extensions of this work.

9.1 S ummary

Issues that impede the development of a general-purpose, functional simulation-based system

level dependability analysis tool include:

• Modeling a large variety of components.

• Coping with the large fault model domain.

• Reducing model development time and model complexity.

• Incorporating software behavior under faults.

• Reducing simulation time explosion.

9.1.1 The Approach

Modern software engineering techniques, and in particular the object-oriented design paradigm

are used to tackle the first three issues. Two somewhat competing criteria of modular decompo-

sition and composition along with inheritance and reusability are used to develop a structured

class hierarchy. This hierarchy provides a skeletal framework that can be readily customized

to create detailed simulation models of a wide variety of fault-tolerant architectures for fault

injection and dependability studies. The key idea was to encapsulate general mechanisms in

116

a setof fundamentalobjectsandthroughinheritanceandclientshipallow them to drive other

objectsthat simulatethearchitecturespecificbehavior.Thusasetof flmdamentalobjectswas

developedthat facilitatesandautomatesthedevelopmentof simulationmodels.In addition, a

default setof objectsthat modelmanycommonarchitectureswascreatedto further simplify

the developmentof simulationmodels.Thesefundamentalandarchitecturespecificobjectscan

in turn be inheritedanddevelopedto createstill moreelaborateobjects.

Fourbasicfault modelsareprovidedwhichcanbeusedto simulatespecificfault behaviors:

status faults, processfaults, serverfaults and data faults. A fault injector is usedto inject

faults basedon commonlyuseddistributions:exponential,WeibuUand constant. In addition,

userspecifiedempiricaldistributionsarealsosupported.The injector usesa fast table-based

injectorto keeptrackof all components,their statusandthetimeof their next injection. It also

automaticallytakescomponentaginginto accountand avertsthe problemof modeling local

and global times found in most analytical tools. A workload-based injection scheme has also

been developed. It varies the rate of injection based on the load on the system and permits

modeling of the workload/failure relationship found by other researchers.

Two examples are used to highlight the benefits of the functional simulation tool. Unlike

analytical and Petri-net tools, a system's fault behavior does not have to be pre-defined with a

set of probabilities. Rather, using detailed modeling of the architecture and its system software.

the failure modes of the system can be determined using the tool. In one example, actual svstem

software is executed and a particular design feature that made it very susceptible to a particular

fault type was identified.

9.1.2 Software Modeling

DEPEND addresses the need to study the effect of software under hardware faults and to

perform application specific analysis. This is especially important to designers because the

effectiveness of many system level detection and fault tolerance mechanisms depend on the

class of applications running on the system. DEPEND allows the execution of actual software

on a simulated hardware platform, and it provides a software model that can be used to evaluate

the behavior and the effect of software on hardware faults. The model represents application

programs by decomposing them into graph models consisting of a set of nodes, a set of edges that

probabilistically determine the flow from node to node, and a mapping of the nodes to memory.

117

The softwaremodelsimulatestheexecutionof the programs while errors are injected into their

memory space. The result provides application dependent parameters such as detection and

propagation times. The model is especially useful in the early design stages because it allows

designers to make application dependent evaluation of function and system level error detection

and recovery schemes.

One use of the software model was illustrated with a case study. The model was used to

obtain error detection latency times of the Gauss and sort programs running on a Tandem

Integrity $2 system and to evaluate the coverage of two memory scrubbing schemes. The

applicability of the model for different programs was evaluated by studying its sensitivity to

the detection parameter pt. Several detection equations, which model the low level detection

process of a CPU, were derived empirically from studying the behavior of the actual machine

under faults. Of these, the EXP detection equation was shown to be applicable to both Gauss

and Sort which use widely different sets of instructions. We feel that this detection equation

is generally applicable to most compute bound programs running on RISC processors. Error

detection latency times obtained with the model were validated with measurements from an

actual Integrity $2 system. Formulae which were derived to estimate application dependent

active coverage values of the scrubbing schemes were verified with the software model. The

application dependent coverage values obtained with the model were compared with those

obtained via traditional schemes that assume uniform or ramp memory access patterns. For

the Gauss program, some coverage values obtained using the traditional approach were found to

be more than 100% larger than those obtained with the software model. This result emphasizes

the importance of accurate application specific evaluation - especially when evaluating the

dependability of application specific systems.

9.1.3 Acceleration Technique

Unlike any other simulation-based dependability analysis tool, DEPEND provides an accelera-

tion technique to reduce simulation time explosion. The acceleration technique proposed uses

a unique combination of three schemes to provide speed-up. It uses hierarchical simulation, a

time acceleration algorithm, and hybrid simulation. First, detailed functional simulations of

segments of the system are executed to obtain statistical models that represent and characterize

their behavior. These statistical models are then used by higher level simulations that simulate

118

andanalyzelargersegmentsof thesystem.Speed-upisachievedwith this hierarchicalapproach

througha time accelerationalgorithm. The time accelerationalgorithm, usedby the higher

levelsimulations,samplesfrom the statisticalmodelsto determinethe time of the next event

(representedbythestatisticalmodel)apriori. With this apriori knowledge, the simulation leaps

forward to a point in time just before the event and resumes detailed simulation. Once the

effect of the event has subsided, it leaps forward to the next chronological event. To achieve

further speed-up, a hybrid simulation approach is used. Using the notion of variable aggrega-

tion and decomposition, the entire dependability simulo.tion is divided into two submodels: the

failure occurrence submodel and the repair submodel. Either or both submodels are simulated

in detail while statistical models to represent them are collected. Then, the statistical models

are used to drive either a Monte Carlo simulation or a Markov or Semi-Markov model to ob-

tain solutions for the entire system. The statistical models are typically distributions such as

detection latency distributions or propagation time distributions. But they may also be sets

of probabilities such as a fault dictionary used to represent the failure modes of an application

software.

The proposed acceleration technique differs from those used by others in that

• It does not rely solely on analytical techniques to reduce simulation time explosion.

• It is designed to work with detailed functional simulations.

• It is widely applicable and does not impose any particular solution method. As such, it

caters to the general design philosophy of DEPEND.

• It can be used in conjunction with other acceleration techniques such as importance

sampling.

The acceleration technique was illustrated with a case study of the Tandem Integrity $2. Us-

ing hierarchical simulation and time acceleration techniques, error latency distributions were

obtained. These distributions were validated with measured distributions collected from the

actual machine. The empirical distributions were then used in a hybrid model of the entire

system to obtain system MTBF figures. The results obtained were compared with those from

a simulation model that did not use the hybrid acceleration technique. The results from the

hybrid model were found to fall within the 99°/0 confidence interval of the non-accelerated sim-

119

ulation. Wherethe originalsimulationtook6 to 36hoursto generateresults,the hybridmodel

requiredonly 50secondsto 7 minutes.

9.1.4 Analysis of the TMR-based System

The DEPEND tool, including the software environment and the acceleration technique, is used

to analyze a TMR system that is based on the design of the Tandem Integrity $2. The purpose

of the study was to investigate issues which include: correlated errors, accurate modeling of

correlated errors, latent errors, inter-component dependencies during automatic repair, mem-

ory scrubbing heuristics, application specific analysis of scrubbing schemes, impact of repair

times, impact of different configurations, and isolation of dependability bottlenecks. This study

illustrates many of the capabilities of DEPEND in a realistic setting. A few of the findings are

now summarized:

• Under the assumptions of the study, the accumulation of latent errors does not, in and

of itself, increase the probability of near-coincident errors. But once the inter-component

dependence imposed by the Integrity S2's architecture and its re-integration scheme is

modeled, error latency can reduce system MTBF by orders of magnitude, with the system

MTBF decreasing monotonically with increasing latency times.

• Simple analytical models that fail to consider error latency exaggerate the impact of

correlated errors. Correlated errors, modeled in a similar fashion to the 'partial coverage'

technique commonly used with analytical tools were shown to reduce system MTBF by

orders of magnitude. However, once correlated latent errors were injected to mimic the

phenomenon of "staggered machine failures" found to be caused by correlated errors [73],

the impact of correlation was noticeably less and became negligible when the error latency

was very large. Hence, the impact of correlated errors depends on the error latency times

associated with the errors.

• The distribution of the latency times for correlated errors has a bearing on system reliabil-

ity. Errors with exponentially and normally distributed latency times with various means

were tried and found to produce statistically significant differences in system MTBF.

A normal distribution with the same mean as an exponential distribution, but with a

120

coefficientof variation C, = 2, was found to produce MTBF figures that were nearly dou-

ble in size. Hence, the specific latency distributions used is important and can produce

significantly different results.

• Memory scrubbing was found to be effective only if the error latency is large. For mean

latency times of 2 to 4 minutes, hourly scrubbing increases system MTBF by only 7%.

For mean latency times exceeding 30 minutes, hourly scrubbing can improve the MTBF

by over 200%. The MTBF curve increases monotonically as the mean of the latency

distribution increases.

• The scrubbing scheme was also found to be very ineffective against near-coincident errors

caused by error latency. However, if the latency times are very large, the scrubber provides

reasonable improvement in the MTBF. When the possibility of near-coincident errors

caused by latency is simulated, the MTBF curves no longer increase monotonically with

an increase in the mean of the latency times. There is a dip in the MTBF curve with the

minimum MTBF point occurring at the point where the mean latency time is equal to

half the scrubber's cycle time.

• The acceleration technique was used to perform application specific analysis of the single

scrubber and the proposed dual scrubber while executing one or more instances of the

Gauss program. The dual scrubber was found to reduce system reliability compared

to the single scrubber in spite of the fact that its coverage of errors injected within the

application space is orders of magnitude higher. This is a function of the Integrity $2

architecture and its re-integration scheme. On another machine the dual scrubber may

improve the reliability.

• Reducing global memory re-integration time and CPU POST time can improve system

MTBF. However, simulations show that reducing repair time of only the component with

the highest error arrival rate is necessary. Reducing the other component's repair time

has negligible impact on system MTBF. Which re-integration time to reduce depends

on the system configuration. With the original configuration which had large global

memories, the global memory re-integration time was the dominant factor. With the new

configuration containing large local memory, the CPU POST time is the dominant factor.

121

O,IqQINAL PAGE 15

OF POOR QUALIT_

• Experiments modeling inter-component dependence caused by latency sh_w that error

latency creates a window of vulnerability for this architecture, and has the most dominant

affect on system reliability. When inter-component dependence is considered, reducing

CPU and global memory re-integration times did not noticeably improve system MTBF

for the error arrival rate used.

9.2 Future Extensions

The methodology and design philosophy incorporated into the existing DEPEND simulation

tool provides the foundation upon which significant future extensions can be built. Future

extensions that will enhance the state-of-the-art in functional simulation-based system level de-

pendability analysis can be divided into three categories: compiler-based enhancements, com-

plete fault injection and debugging environment and graphical interface.

The current implementation of DEPEND is essentially a super set of C-I-+. It was specifi-

caUy designed this way because a special compiler did not have to be developed thus allowing

rapid implementation and testing of the proposed methodology. However, by designing a specific

compiler it is possible to embed intelligence as well as features that will allow the implemention

of two major capabilities. Recall that DEPEND is a process based simulation tool. Process

based simulation facilitates developing large detailed simulation models but has the drawback

of a very large context switch overhead. This is especially true for the Sparc architecture which

has a large register file that must be copied out and in for each context switch. Using a special

compiler, it is possible to translate a process based simulation model into an event-driven sim-

ulation model. This approach will then provide the ease of programming without the context

switch overhead. Preliminary analysis with simple models has shown that this approach is very

promising and can attain 60 times speedups [3]. As mentioned in chapter 2, the crux of parallel

and distributed simulation lies partly in the way in which processes (or co-routines) are assigned

to the various processors. Yet, this issue is seldom addressed in the distributed simulation liter-

ature. Using a special compiler that is cognizant of the functionality of DEPEND objects, the

DEPEND communication paradigms, and also aided by compiler directives, it will be possible to

make intelligent placement decisions to substantially reduce the communication messages used

by the processors to maintain a synchronized global clock. The compiler's placement decisions

122

will most likely be specific to a synchronization scheme. An existing synchronization scheme.

aided by the intelligent placement algorithm may make the approach less application sensitive

and thus capable of providing good speedup across a large domain of simulation models.

In its present state, a DEPEND simulation model can execute actual C++ and C application

programs as a part of the simulation and corrupt any data values using the data fault type

described in chapter 3. The tool can be made more useful if the entire software image of

the application program, its static data space, text space, stack space and its heap space is

corruptible. Since random corruption of a program's software image (which is ultimately just

a co-routine of DEPEND) can cause the co-routine and hence DEPEND simulation to abort,

an approach to capture and handle exceptions is needed. This must be coordinated by another

process that operates independently and outside of the DEPEND simulation. C++ provides

some exception handling facilities but they are still in their infant stages. Hence, standard

operating system signal handling routines will need to be used. While existing tools such as

FER.R.ARI [36] and FIAT [18] already provide such an injection capability, implementing it

within a simulation environment provides a significant advantage. The application program

is executed on a simulated hardware platform rather than an actual one making it possible

to test the software on various types of architectures (e.g. single processor, shared memory

multiprocessor, distributed system) with minimal effort. For example, an actual operating

system can be executed and tested on a single processor initially and then executed on a

distributed system, by simply changing the underlying simulated hardware platform. With

tittle additional work the injection environment can be extended to permit debugging. Note

that since both the DEPEND simulation model as well as the application programs executed

within the simulation environment are just DEPEND processes, both can be debugged and

tested under normal operating conditions (that is without fault injection).

A graphical user interface can significantly facilitate the entry of simulation models. Cur-

rently, C++ programming is used to develop simulation models. As the system becomes large

and complex, faster and more efficient input schemes are necessary so that the models can be

developed with minimal effort and within a reasonable period of time. A major issue is how to

provide a user friendly data entry environment without losing the power of C++ programming.

A key to this problem will be to develop a methodology for explicitly specifying the physical

architecture of a system, the component inter-connections and their inter-dependencies. By

123

inter-dependencies,we meaninformationsuchas what componentsfail whenagiven com-

ponent is shutdownand what componentsmust be healthy in order to initiate a repairof a

faulty component.Currently,systeminterconnectionsand the physicalarchitecturearespec-

ified implicitly via the functionalityof the simulationmodel. Inter-dependenciesarespecified

with "notificationfunctions",whichthoughpowerfularetediousanddifficult to usefor large

complexsystems.

All threeareasare fundamental research topics that can substantially enhance the state-

of-the-art in functional simulation-based system level dependability analysis and help to make

such a tool useful to industry.

124

Appendix A

Automation of the Acceleration

Technique

The object-oriented paradigm facilitates the automation of the acceleration technique described

in chapter 7. Some objects used to automate the process are presented and described. Only

objects that are used to collect statistical models consisting of distributions are shown. Figure

A.1 shows the fundamental class store_dist used to collect a distribution. The method record() is

used to store (collect) samples obtained from a simulation model. The remaining methods return

commonly required statistics of the distribution. Method get_sample(), randomly samples from

the distribution and returns a value. This process involves creating a cumulative distribution.

using an inverse mapping [40] and a binary search.

The store_dist class is the fundamental class used to develop statistical model classes consist-

ing of one or more distributions. Figure A.2 shows how it is used to define a class, stat_modet2,

that contains two distributions. The failure and repair submodels are developed from the sta-

tistical model classes. The user inherits a class that defines a statistical model they need and

then adds a method that contains the functional simulation that models the failure or repair

process. Figure A.3 shows the skeletal framework of a derived class that inherits star_model2

and defines the failure process. The failure submodel depicted simulates the failure occurrence

process and records the failure times of the CPU and global memory. When enough samples

have been collected, the finish() routine is invoked to wake up any process awaiting its com-

pletion. The repair submodel is not shown. It is developed in an identical fashion. That is, it

125

class store_dist {

store_dist();
store_dist(int num);
void init(int num);

void record(double x);

double mean();
double median();

double max();
double min();

double std();
double get_sample();

};

//number of samples stored
//number of samples stored

//store sample point x
//return mean

//return median
// return maximum

// return minimum
// return standard deviation

//randomly sample from distribution

Figure A.I: Definition of class used to collect distributions.

class star_model2 {
private:

store_dist x,y;
public:

stat_model2(int numx, int numy);
void record(int type, double value);

double mean(int type);
double median(int type);
double max(int type);

double min(int type);
double std(int type);

double get_sample(int type);

void finish();
void sleep();

};

// Each stores a distribution

// initialize each collector
//place value in to x or y based on type
// return mean

//return median
// return maximum

// return minimum
// return standard deviation

//randomly sample from distribution

//collection is finished - wakes up sleeping processes
// sleep until collection is done

Figure A.2: Definition of statistical model consisting of two distributions.

126

class failure_model • public stat_model2 {

void run_failure_model();

};

void failure_model::run_failure_model()

while(!done) {

record(cpu, fail_time);

record(global.memory, fail_time);

)
finished();

Figure A.3: Definition of statistical model consisting of two distributions.

inherits a statistical model class and defines the repair submodel.

The Monte Carlo program which uses the statistical models obtained from the failure and

repair submodels is shown in Figure A.4. The program starts each submodel and then sleeps

until both have completed. It then executes the Monte Carlo simulation program that models

the Markov model in Figure 7.9. Only the logic used to determine the transition from the first

state, OCOG, is shown.

The DEPEND objects provide all the mechanism needed to collect and sample from the

statistical models and use them in Monte Carlo simulations. The user supplies the definition

of the failure and repair submodel and the Monte Carlo program. Though the example shows

an example of hybrid simulation, the same objects are used with hierarchical simulation.

127

main()

failure_model X;

repair.model Y;

Run each submodel and collect statistical model

X.run_failure_model();

Y.run_repair_model();

X.sleep();

¥.sleep();

Monte Carlo model of whole system

state = OCOG;

while(!done) {

switch(state) {

case OCOG: cpufailtime - X.get_sample(cpu);

gmemfaiitime "- Y.get_sample(gmem);

if(cpufailtime i gmemfailtime) {

state - 1COG;

time -I-= cpufailtime;

} else

state ---- OC1G;

time +-- gmemfailtime;

Figure A.4: The Monte Carlo program that uses the failure and repair submodel.

128

Bibliography

[1] J. Arlat, Y. Crouzet, and J. Laprie. Fault-injection for dependability validation of fault
tolerant computing systems. In Proc. 19th Int. Syrup. Fault Tolerant Computing, Chicago,

IL, Jun. 1989.

[2] R. L. Bagrodia, K. M. Chandy, and J. Misra. A message-based approach to discrete-event
simulation. IEEE Trans. on Software Eng., SE-13(6):654-665, Jun. 1987.

[3] J. Barnette, Mar. 1993. Private communications with Mr. Barnette during his preliminary

analysis.

[4] S. J. Bavuso, J. B. Dugan, K. S. Trivedi, E. M. Rothman, and W. E. Smith. Analysis of

typical fault-tolerant architectures using HARP. IEEE Trans. on Reliability, R-36(2): 176-

185, Jun. 1987.

[5] G. Booch. Object Oriented Design. Benjamin Cummings, 1991.

[6] R. Breu. Algebraic Specification Techniques in Object Oriented Programming Environ-
ments. Lecture Notes in Computer Science. Springer-Verlag, 1991.

[7] X. Castillo and D. Siewiorek. A workload dependent software reliability prediction model.

In 12th Int. Syrup. on Fault-Tolerant Computing, Jun. 1982.

[8] R. Chillarege and N. S. Bowen. Understanding large system failures - a fault injection

experiment. In Proc. 19th Int. Syrup. on Fault-Tolerant Computing, pages 356-363. Jun.

1998.

[9] R. Chillarege and R. K. Iyer. Measurement-based analysis of error latency. IEEE Trans.

on Computers, C-36(5), May 1987.

[10] G. Choi and R. K. Iyer. Fault dictionary stuff. In 23rd Int. Syrup. on Fault Tolerant

Computing, Jun. 1993.

[11] G. S. Choi, R. K. Iyer, and V. Carreno. Focus: An experimental environment for validation
of fault tolerant systems: A case study of a jet engine control.let. In IEEE Inter. Conf. on

Computer Design (ICCD), pages 561-564, Oct. 1989.

[12] .l.A. Clark and D. K. Pradhan. React: A synthesis and evaluation tool for fault-tolerant

multiprocessor architectures. In Proc. Ann. Reliability and Maintainability Syrnp.. pages

428-435, 1993.

129

[13]

[14]

[15]

P. J. Courtois. Decomposability, instabilities, and saturation in multiprogramming systems.

Communications of the ACM, 18(7):371-377, Jul 1975.

E. W. Czeck. On The Prediction of Fault Behavior Based on Workload. PhD thesis,

Carnegie Mellon University - Dept. of Electrical Eng., April 1991.

M. Devarakonda and D. Ferguson. Coroutines in process-oriented simulation laguages: Im-

plications of multiple stacks implementation. In 5th International Conference on Modeling

Techniques and Tools, Feb. 1990.

[16] J. B. Dugan and K. S. Trivedi. Coverage modeling for dependability analysis of fault-

tolerant systems. IEEE Trans. on Computers, 38(6):775-787, Jun. 1989.

[17] A. Dupuy, J. Schwartz, Y. Yemini, and D. Bacon. NEST: A network simulation and

prototyping testbed. Communications of the ACM, 33:64-74, Oct. 1990.

[18] Z. Segall et. al. Fiat - fault injection based automated testing environment. In Proc. 18th

Int. Syrup. Fault-Tolerant Computing, pages 102-107, Jun. 1988.

[19]

[2o]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

R. Geist and K. Trivedi. Reliability estimation of fault-tolerant systems: Tools and tech-

niques. IEEE Computer, 23(7):52-61, Jul. 1990.

K. K. Goswami, M. Devarakonda, and R. K. Iyer. Prediction-based dynamic load-sharing

heuristics. IEEE Trans. on Parallel and Distributed Systems, Jun. 1993.

K. K. Goswami and R. K. Iyer. Depend: A design environment for prediction and evalu-

ation of system dependability. In 9th Digital Avionics Systems Conference, pages 87-92,

Oct. 1990.

K. K. Goswami and R. K. Iyer. The DEPEND Reference Manual. University of Illinois -

Center for Reliable and High Performance Computing, Urbana, Illinois 61801, Oct. 1990.

K. K. Goswami and R. K. Iyer. DSIM: A distributed simulator. Technical Report NCA-

2-385, NASA Ames Research Center, May 1990.

K. K. Goswami and R. K. Iyer. DEPEND: A simulation-based environment for system

level dependability analysis. Technical Report CRHC Report #92-11, CRHC - University

of Illinois, Jun. 1992.

K K. Goswami and R. K. Iyer. Simulation of software behavior under hardware faults.

In Pro(:. of the 23rd Inter. Syrup. on Fault-Tolerant Computing, Toulouse, pages 218-227,
Jun. 1993.

K. K. Goswami, R. K. Iyer, and M. Devarakonda. Load-sharing based on task resource

prediction. In 22nd Hawaii Int. Conf., pages 921-927, Jan. 1989.

J. Gray. A census of tandem system availability between 1985 and 1990. IEEE Trans. on

Reliability, 39(4):409-418, 1990.

J. M. Hammersley and C. C. Handscomb. Monte Carlo Methods. Methuen and Co. LTD.,

London, England, 1964.

130

[29] M. C. Hsueh, R. K. [yer, and K. S. Trivedi. Performability modeling based on real data:

A case study. [EEE Trans. on Computing, 37(4), Apr. 1988.

[30] IEEE Press. IEEE Standard VHDL Language Reference Manual. std 1076-t987 edition,

1988.

[31] R. K. Iyer, S. E. Butner, and E. J. McCluskey. A statistical failure/load relationship:
Results of a multicomputer study. IEEE Trans. on Computers, SE-8:354-370, Jul. 1982.

[32] D. Jefferson and H. Sowizral. Fast concurrent simulation using the time warp mechanism.

In Proc. of the SCS Distributed Simulation Conf., San Diego, Jan. 1985.

[33] D. R. Jefferson. Virtual time. ACM Trans. Programming Language System, 7(3):404-425,

Jul. 1985.

[34] D. Jewett. Integrity $2: A fault-tolerant unix platform. In Proc. 21st Int. Syrup. Fault-

Tolerant Computing, Jun. 1991.

[35] A. M. Johnson and M. A. Schoenfelder. Rainbow net analysis of VAXcluster system

availability. IEEE Trans. on Reliability, Jul. 1991.

[36] G. Kanawati, N. Kanawati, and J. Abraham. FERRARI: A fault and error automatic

real-time injector. In Pro(:. 22nd Int. Syrup. Fault-Tolerant Computing, Jul. 1992.

[37] H. Kobayashi. Modeling and Analysis: An Introduction to System Performance Evaluation
Methodology Simulation Modeling and Analysis. Addison-Wesley Publishing Co., 1978.

[38] J. Lala. Fault detection isolation and reconfiguration in ftmp: Methods and experimental
results. In 5th AIAA/IEEE Digital Avionics Systems Conference, pages 21.3.1-21.3.9,

1983.

[39] J. Laprie. Dependability evaluation of software systems in operation. [EEE Trans. on

Software Engineering, SE-10:701-714, Nov. 1984.

[40] A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw Hill Book

Company, 1982.

[41] E. E. Lewis, F. Boehm, C. Kirsch, and B. P. Kelkhoff. Monte carlo simulation of complex

system mission reliability. In Proc. Winter Simulation Conf., pages 497-504, 1989.

[42] N. A. Lynch and M. J. Fischer. On describing the behavior and implementation of dis-
tributed systems. Theoretical Computer Science, 13:17-43, 1981.

[43] M. H. MacDougall and J.S. McAlpine. Computer simulation with aspol. In Symposium
on the Simulation of Comp. Sys., ACM/SIGSIM, pages 93-103, 1973.

[44] A. Mahmood and E. J. McCluskey. Watchodg processors: Error coverage and overhead.

In Proc. I5th Int. Syrup. Fault-Tolerant Computing, pages 214-219, .hm. 1985.

[45] J. H. McGough, F. L. Swern, and S. Bavuso. New results in fault latency modelling. In
I6th Annual Electronics and Aerospace Conf., pages 299-306, Sep. 1983.

131

[46] B. Meyer. Object-oriented Software Construction. International Series in Computer Sci-

ence. Prentice Hall, 1988.

[47]

[48]

J. F. Meyer and L. Wei. Influence of workload on error recovery in random access memories.

IEEE Trans. on Computers, C-37:500-507, Apr. 1988.

G. Miremadi, J. Karlsson, U. Gunneflo, and J. Torin. Two software techniques for on-line

error detection. In Proc. 22nd Int. Syrup. on Fault-Tolerant Computing, pages 328-335,
June 1992.

[49] J. Misra. Distributed discrete-event simulation. Computing Surveys, 18(1):39-65, Mar.
1986.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[6o]

[61]

[62]

V. F. Nicola, M. K. Nakayama, P. Heidelberger, and A. Goyal. Fast simulation of depend-

ability models with general failure, repair and maintenance processes. In Proc. 20th Int.

Syrup. on Fault-Tolerant Computing, Jun. 1990.

R. R. Oldehoeft. Program graphs and execution behavior. IEEE Trans. on Software Eng.,

SE-9:103-108, 1983.

D. K. Pradhan, editor. Fault-Tolerant Computing: Theory and Techniques, volume I.

Prentice-Hall, 1986.

T. W. Pratt. Programming Languages: Design and Implementation. Prentice-Hall, Inc.,

Engelwood Cliffs, New Jersey, 1975.

R. A. Sahner and K. S. Trivedi. Reliability modeling using SHARPE. IEEE Trans. on

Reliability, R-36(2):186-193, Jun. 1987.

A. M. Saleh, J. J. Serrano, and J. H. Patel. Reliability of scrubbing recovery-techniques

for memory systems. IEEE Trans. on Reliability, 39:114-122, April 1990.

W. H. Sanders and J. F. Meyer. METASAN: A performability evaluation tool based on

stochastic activity networks. In Fall Joint Comp. Conf., pages 807-816, Nov. 1986.

SAS Institute Inc., Box 8000, Cary, NC 27511-8000. SAS Manual, 1985.

C.H. Sauer, E.A. MacNair, and J.F. Kurose. P_esq: Cms user's guide. Technical Report

RA-139, IBM T.J. Watson Research Center, Yorktown Heights, N.Y., Apr. 1982.

H. Schwetman. Hybrid simulation models of computer systems. Communications of the

ACM, 21(9):718-723, Sep. 1978.

H. Schwetman. Csim: A C-based process-oriented simulation language. In Proc. Winter

Simulation Conf., 1986.

SES, Inc., Austin, TX. SES/Sim Simulation Language Reference Manual, Mar. 1989.

P. Shahabuddin, V. F. Nicola, P. Heidelberger, A. Goyal, and P. W. Glynn. Variance

reduction in mean time to failure simulations. In Proc. Winter Simulation Conference,

pages 491-498, 1988.

132

[63] K. G. ShinandY. H. Lee.Measurementandapplicationof fault latency. IEEE Transac-
tions on Computers, C-35:370-375, 1986.

[64] K. G. Shin and T. Lin. Modeling and measurement of error propagation in a multimodule

computing system. IEEE Trans. on Computers, 37:1053-1066, Sep. 1988.

[65] S. Y. H. Su and T. Lin. Functional testing techniques for digital lsi/vlsi devices. In 21st

Design Automation Conf. (DAC), pages 517-528, 1984.

[66] F. L. Swern, S. J. Bavuso, A. L. Martensen, and P. S. Miner. The effects of latent faults on

highly reliable computer systems. IEEE Trans. on Computers, C-36(8):1000-1005, Aug.

1987.

[67] D. Tang and R. K. Iyer. Impact of correlated failures on dependability !n a vaxcluster

system. In 2nd IFIP Conf. on Dependable Computing for Critical Applications, Feb. 1991.

[68] D. Tang, R. K. Iyer, and S. S. Subramani. Failure analysis and modeling of a vaxcluster

system. In Proc. 20th Int. Syrup. Fault-Tolerant Computing, June 1990.

[69] S. M. Thatte and J. Abraham. Test generation for microprocessors. IEEE Trans. on

Computers, C-29(6):429-441, Jun. 1980.

[70] K. S. Trivedi. Probability and Statistics with Reliability, Queueing, and Computer Science

Applications. Prentice-Hall, 1982.

[71] K. S. Trivedi and R. M. Geist. Decomposition in reliability analysis of fault-tolerant

systems. IEEE Trans. on Reliability, R.-32(5):463-468, Dec. 1983.

[72] J. Walrand. Quick simulation of queueing networks: An introduction. In G. Iazeolaa, P. J.
Courtois, and O.J. Boxma, editors, Computer Perf. and Reliability - Proc. 2nd Int. MCPR

Workshop, pages 275-286. Elsevier Science Publishers B.V. (North-Holland), May 1988.

[73] A. S. Wein and A. Sathaye. Validating complex computer system availability models. IEEE

Trans. Reliability, 39(4):468-479, Oct. 1990.

[74] M. H. Woodbury and K. G. Shin. Measurement and analysis of workload effects on fault
latency in real-time systems. IEEE Trans. on Software Engineering, 16(2):212-216, Feb.

1990.

[75] L. Young, R. K. Iyer, K. K. Goswami, and C. Alonso. A hybrid monitor assisted fault injec-
tion environment. In TMrd IFIP Conf. on Dependable Computing for Critical Applications.

Sep. 1992.

[76] L. T. Young. Hybrid Fault Injection Environment for Measuring System Dependability.
PhD thesis, University of Illinois at Urbana Champaign - Center for Reliable and High

Performance Computing, January 1993.

133

Vita

Kumar K. Goswami received his B.S. degree in Computer Science from Embry-Riddle Aero-

nautical University in 1982. From 1982 to 1984 he was a software engineer in General Electric's

Simulation and Control Systems Division. From 1984 to 1986 he was employed by Raytheon's

Equipment Division in Sudbury, Massachusetts where he was one of the project leaders respon-

sible for the design of a distributed, fault-tolerant operating system for the AOSP project. He

has had summer internships at the Jet Propulsion Laboratory in California and at IBM's T.J.

Watson Research Center. He received his M.S. degree in Computer Science from the University

of Illinois at Urbana-Champaign in 1988. He is a candidate for the Ph.d in Computer Science

at the University of Illinois and is supported by a NASA Graduate Student Researcher's Fel-

lowship. Upon completion of his disseration, he will join Tandem Computers in Cupertino,

California.

134

